返回顶部
首页 > 资讯 > 后端开发 > Python >YOLOv5-6.1添加注意力机制(SE、CBAM、ECA、CA)
  • 592
分享到

YOLOv5-6.1添加注意力机制(SE、CBAM、ECA、CA)

深度学习python计算机视觉 2023-09-01 13:09:51 592人浏览 独家记忆

Python 官方文档:入门教程 => 点击学习

摘要

目录 0. 添加方法1. SE1.1 SE1.2 C3-SE 2. CBAM2.1 CBAM2.2 C3-CBAM 3. ECA3.1 ECA3.2 C3-ECA 4. CA4.1

目录

0. 添加方法

主要步骤:
(1)在models/common.py中注册注意力模块
(2)在models/yolo.py中的parse_model函数中添加注意力模块
(3)修改配置文件yolov5s.yaml
(4)运行yolo.py进行验证
各个注意力机制模块的添加方法类似,各注意力模块的修改参照SE。
本文添加注意力完整代码:https://github.com/double-vin/yolov5_attention

1. SE

Squeeze-and-Excitation Networks
https://github.com/hujie-frank/SENet
在这里插入图片描述
在这里插入图片描述

1.1 SE

  1. models/common.py中注册SE模块
class SE(nn.Module):    def __init__(self, c1, c2, ratio=16):        super(SE, self).__init__()        #c*1*1        self.avgpool = nn.AdaptiveAvgPool2d(1)        self.l1 = nn.Linear(c1, c1 // ratio, bias=False)        self.relu = nn.ReLU(inplace=True)        self.l2 = nn.Linear(c1 // ratio, c1, bias=False)        self.sig = nn.Sigmoid()    def forward(self, x):        b, c, _, _ = x.size()        y = self.avgpool(x).view(b, c)        y = self.l1(y)        y = self.relu(y)        y = self.l2(y)        y = self.sig(y)        y = y.view(b, c, 1, 1)        return x * y.expand_as(x)
  1. models/yolo.py中的parse_model函数中添加SE模块
    在这里插入图片描述
  2. 修改配置文件yolov5s.yaml
    添加注意力的两种方法:一是在backbone的最后一层添加注意力;二是将backbone中的C3全部替换。
    这里使用第一种,第二种见下文中的C3SE
    在这里插入图片描述
    注意:SE添加至第9层,第9层之后所有的编号都要+1,则:
    1>两个Concat的from系数分别由[-1, 14],[-1, 10]改为[-1, 15],[-1, 11]
    2>Detect的from系数由[17, 20, 23]改为[18,21,24]
    在这里插入图片描述
  3. 验证:运行yolo.py
    在这里插入图片描述

1.2 C3-SE

  1. models/common.py中注册C3SE模块:
class SEBottleneck(nn.Module):    # Standard bottleneck    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, ratio=16):  # ch_in, ch_out, shortcut, groups, expansion        super().__init__()        c_ = int(c2 * e)  # hidden channels        self.cv1 = Conv(c1, c_, 1, 1)        self.cv2 = Conv(c_, c2, 3, 1, g=g)        self.add = shortcut and c1 == c2        # self.se=SE(c1,c2,ratio)        self.avgpool = nn.AdaptiveAvgPool2d(1)        self.l1 = nn.Linear(c1, c1 // ratio, bias=False)        self.relu = nn.ReLU(inplace=True)        self.l2 = nn.Linear(c1 // ratio, c1, bias=False)        self.sig = nn.Sigmoid()    def forward(self, x):        x1 = self.cv2(self.cv1(x))        b, c, _, _ = x.size()        y = self.avgpool(x1).view(b, c)        y = self.l1(y)        y = self.relu(y)        y = self.l2(y)        y = self.sig(y)        y = y.view(b, c, 1, 1)        out = x1 * y.expand_as(x1)        # out=self.se(x1)*x1        return x + out if self.add else outclass C3SE(C3):    # C3 module with SEBottleneck()    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):        super().__init__(c1, c2, n, shortcut, g, e)        c_ = int(c2 * e)  # hidden channels        self.m = nn.Sequential(*(SEBottleneck(c_, c_, shortcut) for _ in range(n)))
  1. models/yolo.py中的parse_model函数中添加C3SE模块
    在这里插入图片描述
  2. 修改配置文件yolov5s.yaml
    在这里插入图片描述
  3. 验证:运行yolo.py
    在这里插入图片描述

2. CBAM

《CBAM: Convolutional Block Attention Module》
在这里插入图片描述
在这里插入图片描述

2.1 CBAM

class ChannelAttention(nn.Module):    def __init__(self, in_planes, ratio=16):        super(ChannelAttention, self).__init__()        self.avg_pool = nn.AdaptiveAvgPool2d(1)        self.max_pool = nn.AdaptiveMaxPool2d(1)        self.f1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)        self.relu = nn.ReLU()        self.f2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)        self.sigmoid = nn.Sigmoid()    def forward(self, x):        avg_out = self.f2(self.relu(self.f1(self.avg_pool(x))))        max_out = self.f2(self.relu(self.f1(self.max_pool(x))))        out = self.sigmoid(avg_out + max_out)        return outclass SpatialAttention(nn.Module):    def __init__(self, kernel_size=7):        super(SpatialAttention, self).__init__()        assert kernel_size in (3, 7), 'kernel size must be 3 or 7'        padding = 3 if kernel_size == 7 else 1        # (特征图的大小-算子的size+2*padding)/步长+1        self.conv = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)        self.sigmoid = nn.Sigmoid()    def forward(self, x):        # 1*h*w        avg_out = torch.mean(x, dim=1, keepdim=True)        max_out, _ = torch.max(x, dim=1, keepdim=True)        x = torch.cat([avg_out, max_out], dim=1)        #2*h*w        x = self.conv(x)        #1*h*w        return self.sigmoid(x)class CBAM(nn.Module):    # CSP Bottleneck with 3 convolutions    def __init__(self, c1, c2, ratio=16, kernel_size=7):  # ch_in, ch_out, number, shortcut, groups, expansion        super(CBAM, self).__init__()        self.channel_attention = ChannelAttention(c1, ratio)        self.spatial_attention = SpatialAttention(kernel_size)    def forward(self, x):        out = self.channel_attention(x) * x        # c*h*w        # c*h*w * 1*h*w        out = self.spatial_attention(out) * out        return out

在这里插入图片描述

2.2 C3-CBAM

class CBAMBottleneck(nn.Module):    # Standard bottleneck    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5,ratio=16,kernel_size=7):  # ch_in, ch_out, shortcut, groups, expansion        super(CBAMBottleneck,self).__init__()        c_ = int(c2 * e)  # hidden channels        self.cv1 = Conv(c1, c_, 1, 1)        self.cv2 = Conv(c_, c2, 3, 1, g=g)        self.add = shortcut and c1 == c2        self.channel_attention = ChannelAttention(c2, ratio)        self.spatial_attention = SpatialAttention(kernel_size)        #self.cbam=CBAM(c1,c2,ratio,kernel_size)    def forward(self, x):        x1 = self.cv2(self.cv1(x))        out = self.channel_attention(x1) * x1        # print('outchannels:{}'.fORMat(out.shape))        out = self.spatial_attention(out) * out        return x + out if self.add else outclass C3CBAM(C3):    # C3 module with CBAMBottleneck()    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):        super().__init__(c1, c2, n, shortcut, g, e)        c_ = int(c2 * e)  # hidden channels        self.m = nn.Sequential(*(CBAMBottleneck(c_, c_, shortcut) for _ in range(n)))

在这里插入图片描述

3. ECA

《ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks》
https://github.com/BangguWu/ECANet
在这里插入图片描述

3.1 ECA

class ECA(nn.Module):    """Constructs a ECA module.    Args:        channel: Number of channels of the input feature map        k_size: Adaptive selection of kernel size    """    def __init__(self, c1, c2, k_size=3):        super(ECA, self).__init__()        self.avg_pool = nn.AdaptiveAvgPool2d(1)        self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False)        self.sigmoid = nn.Sigmoid()    def forward(self, x):        # feature descriptor on the global spatial information        y = self.avg_pool(x)        # print(y.shape,y.squeeze(-1).shape,y.squeeze(-1).transpose(-1, -2).shape)        # Two different branches of ECA module        # 50*C*1*1        # 50*C*1        # 50*1*C        y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)        # Multi-scale information fusion        y = self.sigmoid(y)        return x * y.expand_as(x)

在这里插入图片描述

3.2 C3-ECA

class ECABottleneck(nn.Module):    # Standard bottleneck    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, ratio=16, k_size=3):  # ch_in, ch_out, shortcut, groups, expansion        super().__init__()        c_ = int(c2 * e)  # hidden channels        self.cv1 = Conv(c1, c_, 1, 1)        self.cv2 = Conv(c_, c2, 3, 1, g=g)        self.add = shortcut and c1 == c2        # self.eca=ECA(c1,c2)        self.avg_pool = nn.AdaptiveAvgPool2d(1)        self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False)        self.sigmoid = nn.Sigmoid()    def forward(self, x):        x1 = self.cv2(self.cv1(x))        # out=self.eca(x1)*x1        y = self.avg_pool(x1)        y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)        y = self.sigmoid(y)        out = x1 * y.expand_as(x1)        return x + out if self.add else outclass C3ECA(C3):    # C3 module with ECABottleneck()    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):        super().__init__(c1, c2, n, shortcut, g, e)        c_ = int(c2 * e)  # hidden channels        self.m = nn.Sequential(*(ECABottleneck(c_, c_, shortcut) for _ in range(n)))

在这里插入图片描述

4. CA

Coordinate Attention for Efficient Mobile Network Design
https://github.com/Andrew-Qibin/CoordAttention
在这里插入图片描述

4.1 CA

class h_sigmoid(nn.Module):    def __init__(self, inplace=True):        super(h_sigmoid, self).__init__()        self.relu = nn.ReLU6(inplace=inplace)    def forward(self, x):        return self.relu(x + 3) / 6class h_swish(nn.Module):    def __init__(self, inplace=True):        super(h_swish, self).__init__()        self.sigmoid = h_sigmoid(inplace=inplace)    def forward(self, x):        return x * self.sigmoid(x)class CoordAtt(nn.Module):    def __init__(self, inp, oup, reduction=32):        super(CoordAtt, self).__init__()        self.pool_h = nn.AdaptiveAvgPool2d((None, 1))        self.pool_w = nn.AdaptiveAvgPool2d((1, None))        mip = max(8, inp // reduction)        self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)        self.bn1 = nn.BatchNorm2d(mip)        self.act = h_swish()        self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)        self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)    def forward(self, x):        identity = x        n, c, h, w = x.size()        # c*1*W        x_h = self.pool_h(x)        # c*H*1        # C*1*h        x_w = self.pool_w(x).permute(0, 1, 3, 2)        y = torch.cat([x_h, x_w], dim=2)        # C*1*(h+w)        y = self.conv1(y)        y = self.bn1(y)        y = self.act(y)        x_h, x_w = torch.split(y, [h, w], dim=2)        x_w = x_w.permute(0, 1, 3, 2)        a_h = self.conv_h(x_h).sigmoid()        a_w = self.conv_w(x_w).sigmoid()        out = identity * a_w * a_h        return out

在这里插入图片描述

4.2 C3-CA

class CABottleneck(nn.Module):    # Standard bottleneck    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, ratio=32):  # ch_in, ch_out, shortcut, groups, expansion        super().__init__()        c_ = int(c2 * e)  # hidden channels        self.cv1 = Conv(c1, c_, 1, 1)        self.cv2 = Conv(c_, c2, 3, 1, g=g)        self.add = shortcut and c1 == c2        # self.ca=CoordAtt(c1,c2,ratio)        self.pool_h = nn.AdaptiveAvgPool2d((None, 1))        self.pool_w = nn.AdaptiveAvgPool2d((1, None))        mip = max(8, c1 // ratio)        self.conv1 = nn.Conv2d(c1, mip, kernel_size=1, stride=1, padding=0)        self.bn1 = nn.BatchNorm2d(mip)        self.act = h_swish()        self.conv_h = nn.Conv2d(mip, c2, kernel_size=1, stride=1, padding=0)        self.conv_w = nn.Conv2d(mip, c2, kernel_size=1, stride=1, padding=0)            def forward(self, x):        x1=self.cv2(self.cv1(x))        n, c, h, w = x.size()        # c*1*W        x_h = self.pool_h(x1)        # c*H*1        # C*1*h        x_w = self.pool_w(x1).permute(0, 1, 3, 2)        y = torch.cat([x_h, x_w], dim=2)        # C*1*(h+w)        y = self.conv1(y)        y = self.bn1(y)        y = self.act(y)        x_h, x_w = torch.split(y, [h, w], dim=2)        x_w = x_w.permute(0, 1, 3, 2)        a_h = self.conv_h(x_h).sigmoid()        a_w = self.conv_w(x_w).sigmoid()        out = x1 * a_w * a_h        # out=self.ca(x1)*x1        return x + out if self.add else outclass C3CA(C3):    # C3 module with CABottleneck()    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):        super().__init__(c1, c2, n, shortcut, g, e)        c_ = int(c2 * e)  # hidden channels        self.m = nn.Sequential(*(CABottleneck(c_, c_,shortcut) for _ in range(n)))

在这里插入图片描述
Tips:添加注意力的位置不局限,可以尝试各种排列组合
参考:
多种注意力介绍
添加注意力视频讲解
添加CBAM

来源地址:https://blog.csdn.net/weixin_50008473/article/details/124590939

--结束END--

本文标题: YOLOv5-6.1添加注意力机制(SE、CBAM、ECA、CA)

本文链接: https://lsjlt.com/news/388477.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作