返回顶部
首页 > 资讯 > 后端开发 > Python >改进版ASPP:ASPP加入通道注意力机制(SENET),即SE_ASPP
  • 420
分享到

改进版ASPP:ASPP加入通道注意力机制(SENET),即SE_ASPP

python深度学习pytorch 2023-10-03 16:10:22 420人浏览 独家记忆

Python 官方文档:入门教程 => 点击学习

摘要

1、ASPP模型结构 空洞空间卷积池化金字塔(atrous spatial pyramid pooling (ASPP))通过对于输入的特征以不同的采样率进行采样,即从不同尺度提取输入特征,然后将所

1、ASPP模型结构

ASPP结构
空洞空间卷积池化金字塔(atrous spatial pyramid pooling (ASPP))通过对于输入的特征以不同的采样率进行采样,即从不同尺度提取输入特征,然后将所获取的特征进行融合,得到最终的特征提取结果。

2、SENET结构

SENET结构
通道注意力机制(SENET)将尺度为HXWXC尺度大小的特征图通过全局平均池化进行压缩,只保留通道尺度上的大小C,即转换为1X1XC,之后再进行压缩,relu与还原,最后使用simoid进行激活,将各个通道的值转化为0~1范围内,相当于将各个通道的特征转换为权重值。
SENET代码如下:

import torchimport torch.nn as nnimport torch.nn.functional as F# tensor=torch.ones(size=(2,1280,32,32))# print(tensor)class SE_Block(nn.Module):                         # Squeeze-and-Excitation block    def __init__(self, in_planes):        super(SE_Block, self).__init__()        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))        self.conv1 = nn.Conv2d(in_planes, in_planes // 16, kernel_size=1)        self.relu = nn.ReLU()        self.conv2 = nn.Conv2d(in_planes // 16, in_planes, kernel_size=1)        self.sigmoid = nn.Sigmoid()    def forward(self, x):        x = self.avgpool(x)        x = self.conv1(x)        x = self.relu(x)        x = self.conv2(x)        out = self.sigmoid(x)        return out

(如果要直接使用下面的SE_ASPP改进代码,建议将这块代码新建py文件保存,然后在SE_ASPP所在python中导入SE_Block类)

3、改进ASPP:SE_ASPP结构

基于deeplabv3+中的ASPP改进
即把SENET产生的权重值与原本输入的各个特征进行相乘,作为输入特征。代码如下

class SE_ASPP(nn.Module):                       ##加入通道注意力机制    def __init__(self, dim_in, dim_out, rate=1, bn_mom=0.1):        super(SE_ASPP, self).__init__()        self.branch1 = nn.Sequential(            nn.Conv2d(dim_in, dim_out, 1, 1, padding=0, dilation=rate, bias=True),            nn.BatchNORM2d(dim_out, momentum=bn_mom),            nn.ReLU(inplace=True),        )        self.branch2 = nn.Sequential(            nn.Conv2d(dim_in, dim_out, 3, 1, padding=6 * rate, dilation=6 * rate, bias=True),            nn.BatchNorm2d(dim_out, momentum=bn_mom),            nn.ReLU(inplace=True),        )        self.branch3 = nn.Sequential(            nn.Conv2d(dim_in, dim_out, 3, 1, padding=12 * rate, dilation=12 * rate, bias=True),            nn.BatchNorm2d(dim_out, momentum=bn_mom),            nn.ReLU(inplace=True),        )        self.branch4 = nn.Sequential(            nn.Conv2d(dim_in, dim_out, 3, 1, padding=18 * rate, dilation=18 * rate, bias=True),            nn.BatchNorm2d(dim_out, momentum=bn_mom),            nn.ReLU(inplace=True),        )        self.branch5_conv = nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=True)        self.branch5_bn = nn.BatchNorm2d(dim_out, momentum=bn_mom)        self.branch5_relu = nn.ReLU(inplace=True)        self.conv_cat = nn.Sequential(            nn.Conv2d(dim_out * 5, dim_out, 1, 1, padding=0, bias=True),            nn.BatchNorm2d(dim_out, momentum=bn_mom),            nn.ReLU(inplace=True),        )        # print('dim_in:',dim_in)        # print('dim_out:',dim_out)        self.senet=SE_Block(in_planes=dim_out*5)    def forward(self, x):        [b, c, row, col] = x.size()        conv1x1 = self.branch1(x)        conv3x3_1 = self.branch2(x)        conv3x3_2 = self.branch3(x)        conv3x3_3 = self.branch4(x)        global_feature = torch.mean(x, 2, True)        global_feature = torch.mean(global_feature, 3, True)        global_feature = self.branch5_conv(global_feature)        global_feature = self.branch5_bn(global_feature)        global_feature = self.branch5_relu(global_feature)        global_feature = F.interpolate(global_feature, (row, col), None, 'bilinear', True)        feature_cat = torch.cat([conv1x1, conv3x3_1, conv3x3_2, conv3x3_3, global_feature], dim=1)        # print('feature:',feature_cat.shape)        seaspp1=self.senet(feature_cat)             #加入通道注意力机制        # print('seaspp1:',seaspp1.shape)        se_feature_cat=seaspp1*feature_cat        result = self.conv_cat(se_feature_cat)        # print('result:',result.shape)        return result

Reference

[1].Y. Sun, Y. Yang, G. Yao, F. Wei and M. Wong, “Autonomous Crack and Bughole Detection for Concrete Surface Image Based on Deep Learning,” in IEEE Access, vol. 9, pp. 85709-85720, 2021, doi: 10.1109/ACCESS.2021.3088292.
[2].J. Hu, L. Shen and G. Sun, “Squeeze-and-Excitation Networks,” 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132-7141, doi: 10.1109/CVPR.2018.00745.

来源地址:https://blog.csdn.net/qq_45014374/article/details/127507120

--结束END--

本文标题: 改进版ASPP:ASPP加入通道注意力机制(SENET),即SE_ASPP

本文链接: https://lsjlt.com/news/423100.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作