本篇内容主要讲解“pandas数据类型中cateGory的用法”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Pandas数据类型中category的用法”吧!创建category使用Series
本篇内容主要讲解“pandas数据类型中cateGory的用法”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Pandas数据类型中category的用法”吧!
在创建Series的同时添加dtype="category"就可以创建好category了。category分为两部分,一部分是order,一部分是字面量:
In [1]: s = pd.Series(["a", "b", "c", "a"], dtype="category")In [2]: sOut[2]: 0 a1 b2 c3 adtype: categoryCategories (3, object): ['a', 'b', 'c']
可以将DF中的Series转换为category:
In [3]: df = pd.DataFrame({"A": ["a", "b", "c", "a"]})In [4]: df["B"] = df["A"].astype("category")In [5]: df["B"]Out[32]: 0 a1 b2 c3 aName: B, dtype: categoryCategories (3, object): [a, b, c]
可以创建好一个pandas.Categorical
,将其作为参数传递给Series:
In [10]: raw_cat = pd.Categorical( ....: ["a", "b", "c", "a"], categories=["b", "c", "d"], ordered=False ....: ) ....: In [11]: s = pd.Series(raw_cat)In [12]: sOut[12]: 0 NaN1 b2 c3 NaNdtype: categoryCategories (3, object): ['b', 'c', 'd']
创建DataFrame的时候,也可以传入 dtype="category":
In [17]: df = pd.DataFrame({"A": list("abca"), "B": list("bccd")}, dtype="category")In [18]: df.dtypesOut[18]: A categoryB categorydtype: object
DF中的A和B都是一个category:
In [19]: df["A"]Out[19]: 0 a1 b2 c3 aName: A, dtype: categoryCategories (3, object): ['a', 'b', 'c']In [20]: df["B"]Out[20]: 0 b1 c2 c3 dName: B, dtype: categoryCategories (3, object): ['b', 'c', 'd']
或者使用df.astype("category")将DF中所有的Series转换为category:
In [21]: df = pd.DataFrame({"A": list("abca"), "B": list("bccd")})In [22]: df_cat = df.astype("category")In [23]: df_cat.dtypesOut[23]: A categoryB categorydtype: object
默认情况下传入dtype='category' 创建出来的category使用的是默认值:
Categories是从数据中推断出来的。
Categories是没有大小顺序的。
可以显示创建CategoricalDtype来修改上面的两个默认值:
In [26]: from pandas.api.types import CategoricalDtypeIn [27]: s = pd.Series(["a", "b", "c", "a"])In [28]: cat_type = CategoricalDtype(categories=["b", "c", "d"], ordered=True)In [29]: s_cat = s.astype(cat_type)In [30]: s_catOut[30]: 0 NaN1 b2 c3 NaNdtype: categoryCategories (3, object): ['b' < 'c' < 'd']
同样的CategoricalDtype还可以用在DF中:
In [31]: from pandas.api.types import CategoricalDtypeIn [32]: df = pd.DataFrame({"A": list("abca"), "B": list("bccd")})In [33]: cat_type = CategoricalDtype(categories=list("abcd"), ordered=True)In [34]: df_cat = df.astype(cat_type)In [35]: df_cat["A"]Out[35]: 0 a1 b2 c3 aName: A, dtype: categoryCategories (4, object): ['a' < 'b' < 'c' < 'd']In [36]: df_cat["B"]Out[36]: 0 b1 c2 c3 dName: B, dtype: categoryCategories (4, object): ['a' < 'b' < 'c' < 'd']
使用Series.astype(original_dtype)
或者 np.asarray(categorical)
可以将Category转换为原始类型:
In [39]: s = pd.Series(["a", "b", "c", "a"])In [40]: sOut[40]: 0 a1 b2 c3 adtype: objectIn [41]: s2 = s.astype("category")In [42]: s2Out[42]: 0 a1 b2 c3 adtype: categoryCategories (3, object): ['a', 'b', 'c']In [43]: s2.astype(str)Out[43]: 0 a1 b2 c3 adtype: objectIn [44]: np.asarray(s2)Out[44]: array(['a', 'b', 'c', 'a'], dtype=object)
Categorical数据有 categories
和 ordered
两个属性。可以通过s.cat.categories
和 s.cat.ordered
来获取:
In [57]: s = pd.Series(["a", "b", "c", "a"], dtype="category")In [58]: s.cat.categoriesOut[58]: Index(['a', 'b', 'c'], dtype='object')In [59]: s.cat.orderedOut[59]: False
重排category的顺序:
In [60]: s = pd.Series(pd.Categorical(["a", "b", "c", "a"], categories=["c", "b", "a"]))In [61]: s.cat.categoriesOut[61]: Index(['c', 'b', 'a'], dtype='object')In [62]: s.cat.orderedOut[62]: False
通过给s.cat.categories赋值可以重命名categories:
In [67]: s = pd.Series(["a", "b", "c", "a"], dtype="category")In [68]: sOut[68]: 0 a1 b2 c3 adtype: categoryCategories (3, object): ['a', 'b', 'c']In [69]: s.cat.categories = ["Group %s" % g for g in s.cat.categories]In [70]: sOut[70]: 0 Group a1 Group b2 Group c3 Group adtype: categoryCategories (3, object): ['Group a', 'Group b', 'Group c']
使用rename_categories可以达到同样的效果:
In [71]: s = s.cat.rename_categories([1, 2, 3])In [72]: sOut[72]: 0 11 22 33 1dtype: categoryCategories (3, int64): [1, 2, 3]
或者使用字典对象:
# You can also pass a dict-like object to map the renamingIn [73]: s = s.cat.rename_categories({1: "x", 2: "y", 3: "z"})In [74]: sOut[74]: 0 x1 y2 z3 xdtype: categoryCategories (3, object): ['x', 'y', 'z']
可以使用add_categories来添加category:
In [77]: s = s.cat.add_categories([4])In [78]: s.cat.categoriesOut[78]: Index(['x', 'y', 'z', 4], dtype='object')In [79]: sOut[79]: 0 x1 y2 z3 xdtype: categoryCategories (4, object): ['x', 'y', 'z', 4]
In [80]: s = s.cat.remove_categories([4])In [81]: sOut[81]: 0 x1 y2 z3 xdtype: categoryCategories (3, object): ['x', 'y', 'z']
In [82]: s = pd.Series(pd.Categorical(["a", "b", "a"], categories=["a", "b", "c", "d"]))In [83]: sOut[83]: 0 a1 b2 adtype: categoryCategories (4, object): ['a', 'b', 'c', 'd']In [84]: s.cat.remove_unused_categories()Out[84]: 0 a1 b2 adtype: categoryCategories (2, object): ['a', 'b']
使用set_categories()
可以同时进行添加和删除category操作:
In [85]: s = pd.Series(["one", "two", "four", "-"], dtype="category")In [86]: sOut[86]: 0 one1 two2 four3 -dtype: categoryCategories (4, object): ['-', 'four', 'one', 'two']In [87]: s = s.cat.set_categories(["one", "two", "three", "four"])In [88]: sOut[88]: 0 one1 two2 four3 NaNdtype: categoryCategories (4, object): ['one', 'two', 'three', 'four']
如果category创建的时候带有 ordered=True , 那么可以对其进行排序操作:
In [91]: s = pd.Series(["a", "b", "c", "a"]).astype(CategoricalDtype(ordered=True))In [92]: s.sort_values(inplace=True)In [93]: sOut[93]: 0 a3 a1 b2 cdtype: categoryCategories (3, object): ['a' < 'b' < 'c']In [94]: s.min(), s.max()Out[94]: ('a', 'c')
可以使用 as_ordered() 或者 as_unordered() 来强制排序或者不排序:
In [95]: s.cat.as_ordered()Out[95]: 0 a3 a1 b2 cdtype: categoryCategories (3, object): ['a' < 'b' < 'c']In [96]: s.cat.as_unordered()Out[96]: 0 a3 a1 b2 cdtype: categoryCategories (3, object): ['a', 'b', 'c']
使用Categorical.reorder_categories() 可以对现有的category进行重排序:
In [103]: s = pd.Series([1, 2, 3, 1], dtype="category")In [104]: s = s.cat.reorder_categories([2, 3, 1], ordered=True)In [105]: sOut[105]: 0 11 22 33 1dtype: categoryCategories (3, int64): [2 < 3 < 1]
sort_values 支持多列进行排序:
In [109]: dfs = pd.DataFrame( .....: { .....: "A": pd.Categorical( .....: list("bbeebbaa"), .....: categories=["e", "a", "b"], .....: ordered=True, .....: ), .....: "B": [1, 2, 1, 2, 2, 1, 2, 1], .....: } .....: ) .....: In [110]: dfs.sort_values(by=["A", "B"])Out[110]: A B2 e 13 e 27 a 16 a 20 b 15 b 11 b 24 b 2
如果创建的时候设置了ordered==True ,那么category之间就可以进行比较操作。支持 ==
, !=
, >
, >=
, <
, 和 <=
这些操作符。
In [113]: cat = pd.Series([1, 2, 3]).astype(CategoricalDtype([3, 2, 1], ordered=True))In [114]: cat_base = pd.Series([2, 2, 2]).astype(CategoricalDtype([3, 2, 1], ordered=True))In [115]: cat_base2 = pd.Series([2, 2, 2]).astype(CategoricalDtype(ordered=True))In [119]: cat > cat_baseOut[119]: 0 True1 False2 Falsedtype: boolIn [120]: cat > 2Out[120]: 0 True1 False2 Falsedtype: bool
Cagetory本质上来说还是一个Series,所以Series的操作category基本上都可以使用,比如: Series.min(), Series.max() 和 Series.mode()。
value_counts:
In [131]: s = pd.Series(pd.Categorical(["a", "b", "c", "c"], categories=["c", "a", "b", "d"]))In [132]: s.value_counts()Out[132]: c 2a 1b 1d 0dtype: int64
DataFrame.sum():
In [133]: columns = pd.Categorical( .....: ["One", "One", "Two"], categories=["One", "Two", "Three"], ordered=True .....: ) .....: In [134]: df = pd.DataFrame( .....: data=[[1, 2, 3], [4, 5, 6]], .....: columns=pd.MultiIndex.from_arrays([["A", "B", "B"], columns]), .....: ) .....: In [135]: df.sum(axis=1, level=1)Out[135]: One Two Three0 3 3 01 9 6 0
Groupby:
In [136]: cats = pd.Categorical( .....: ["a", "b", "b", "b", "c", "c", "c"], categories=["a", "b", "c", "d"] .....: ) .....: In [137]: df = pd.DataFrame({"cats": cats, "values": [1, 2, 2, 2, 3, 4, 5]})In [138]: df.groupby("cats").mean()Out[138]: valuescats a 1.0b 2.0c 4.0d NaNIn [139]: cats2 = pd.Categorical(["a", "a", "b", "b"], categories=["a", "b", "c"])In [140]: df2 = pd.DataFrame( .....: { .....: "cats": cats2, .....: "B": ["c", "d", "c", "d"], .....: "values": [1, 2, 3, 4], .....: } .....: ) .....: In [141]: df2.groupby(["cats", "B"]).mean()Out[141]: valuescats B a c 1.0 d 2.0b c 3.0 d 4.0c c NaN d NaN
Pivot tables:
In [142]: raw_cat = pd.Categorical(["a", "a", "b", "b"], categories=["a", "b", "c"])In [143]: df = pd.DataFrame({"A": raw_cat, "B": ["c", "d", "c", "d"], "values": [1, 2, 3, 4]})In [144]: pd.pivot_table(df, values="values", index=["A", "B"])Out[144]: valuesA B a c 1 d 2b c 3 d 4
到此,相信大家对“Pandas数据类型中category的用法”有了更深的了解,不妨来实际操作一番吧!这里是编程网网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
--结束END--
本文标题: Pandas数据类型中category的用法
本文链接: https://lsjlt.com/news/296455.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0