这篇文章主要介绍了pandas中如何创建cateGory类型数据,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。 T1、直接创建 category类型数据可知,在ca
这篇文章主要介绍了pandas中如何创建cateGory类型数据,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。
T1、直接创建 category类型数据
可知,在category类型数据中,每一个元素的值要么是预设好的类型中的某一个,要么是空值(np.nan)。
T2、利用分箱机制(结合max、mean、min实现二分类)动态添加 category类型数据
输出结果
[NaN, 'medium', 'medium', 'fat']
Categories (2, object): ['medium', 'fat']
name ID age age02 ... weight test01 test02 age02_mark
0 Bob 1 NaN 14 ... 140.5 1.000000 1.000000 Minors
1 LiSa 2 28 26 ... 120.8 2.123457 2.123457 Adults
2 Mary 38 24 ... 169.4 3.123457 3.123457 Adults
3 Alan None 6 ... 155.6 4.123457 4.123457 Minors
[4 rows x 12 columns]
实习代码
import pandas as pdimport numpy as np contents={"name": ['Bob', 'LiSa', 'Mary', 'Alan'], "ID": [1, 2, ' ', None], # 输出 NaN "age": [np.nan, 28, 38 , '' ], # 输出 "age02": [14, 26, 24 , 6], "born": [pd.NaT, pd.Timestamp("1990-01-01"), pd.Timestamp("1980-01-01"), ''], # 输出 NaT "sex": ['男', '女', '女', None,], # 输出 None "hobbey":['打篮球', '打羽毛球', '打乒乓球', '',], # 输出 "money":[200.0, 240.0, 290.0, 300.0], # 输出 "weight":[140.5, 120.8, 169.4, 155.6], # 输出 "test01":[1, 2.123456789, 3.123456781011126, 4.123456789109999], # 输出 "test02":[1, 2.123456789, 3.123456781011126, 4.123456789109999], # 输出 }data_frame = pd.DataFrame(contents) # T1、直接创建 category类型数据weight_mark=pd.Categorical(['thin','medium','medium','fat'],categories=['medium','fat'])print(weight_mark) # T2、利用分箱机制(结合max、mean、min实现二分类)动态添加 category类型数据col_age_des=pd.Series(data_frame['age02']).describe()age_ranges=[col_age_des['min']-1,col_age_des['mean'],col_age_des['max']+1]age_labels=['Minors','Adults'] # 高于平均值的为胖data_frame['age02_mark']=pd.cut(data_frame['age02'],age_ranges,labels=age_labels)print(data_frame)
感谢你能够认真阅读完这篇文章,希望小编分享的“pandas中如何创建category类型数据”这篇文章对大家有帮助,同时也希望大家多多支持编程网,关注编程网精选频道,更多相关知识等着你来学习!
--结束END--
本文标题: pandas中如何创建category类型数据
本文链接: https://lsjlt.com/news/269828.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0