Python 官方文档:入门教程 => 点击学习
汉语版:使用python实现huffman编码是一个能够很快地实现。所以我们选择使用Python来实现我们这个程序。 l E-version: we will use python to realize this program call
汉语版:使用python实现huffman编码是一个能够很快地实现。所以我们选择使用Python来实现我们这个程序。 l
E-version: we will use python to realize this program called huffman encoding and decoding. why we use python, because in python we can finish this program faster then other codes. this program are not the final implementation. actually, this is the first version i commit to git. i changed a lot in the least version . so if you run those codes on your environment. some problems may be exist; don`t worry, the first four drafts are right, you can build everything based on them. so Good lucky to you.
I:实现节点类
class node:
def __init__(self,freq):
self.left = None
self.right = None
self.father = None
self.freq = freq
def is_left(self):
return self.father.left == self
II:为每一个节点赋权值
def create_nodes(frequencies):
return [Node(freq) for freq in frequencies]
def create_huffman_tree(nodes):
queue = nodes[:]
while len(queue) > 1:
queue.sort(key=lambda item: item.freq)
node_left = queue.pop(0)
node_right = queue.pop(0)
node_father = Node(node_left.freq + node_right.freq)
node_father.left = node_left
node_father.right = node_right
node_left.father = node_father
node_right.father = node_father
queue.append(node_father)
queue[0].father = None
return queue[0]
def huffman_encoding(nodes, root):
codes = [''] * len(nodes)
for i in range(len(nodes)):
node_tmp = nodes[i]
while node_tmp != root:
if node_tmp.is_left():
codes[i] = '0' + codes[i]
else:
codes[i] = '1' + codes[i]
node_tmp = node_tmp.father
return codes
# 获取字符出现的频数
def count_frequency(input_string):
# 用于存放字符
char_store = []
# 用于存放频数
freq_store = []
# 解析字符串
for index in range(len(input_string)):
if char_store.count(input_string[index]) > 0:
temp = int(freq_store[char_store.index(input_string[index])])
temp = temp + 1
freq_store[char_store.index(input_string[index])] = temp
else:
char_store.append(input_string[index])
freq_store.append(1)
# 返回字符列表和频数列表
return char_store, freq_store
# 获取字符、频数的列表
def get_char_frequency(char_store=[], freq_store=[]):
# 用于存放char_frequency
char_frequency = []
for item in zip(char_store, freq_store):
temp = (item[0], item[1])
char_frequency.append(temp)
return char_frequency
# 将字符转换成huffman编码
def get_huffman_file(input_string, char_frequency, codes):
# 逐个字符替换
file_content = ''
for index in range(len(input_string)):
for item in zip(char_frequency, codes):
if input_string[index] == item[0][0]:
file_content = file_content + item[1]
file_name = 'huffman_' + str(uuid.uuid1())+'.txt'
with open(file_name, 'w+') as destination:
destination.write(file_content)
return file_name
VII:解压缩哈夫曼文件
# 解压缩huffman文件
def decode_huffman(input_string, char_store, freq_store):
encode = ''
decode = ''
for index in range(len(input_string)):
encode = encode + input_string[index]
for item in zip(char_store, freq_store):
if encode == item[1]:
decode = decode + item[0]
encode = ''
return decode
# 计算压缩比
def get_encode_ration(codes):
# 计算所需要的二进制个数
h_length = 0
for item in codes:
h_length = h_length + len(item)
t_length = bin_middle(len(codes))*len(codes)
ratio = t_length/h_length
return str(ratio)[0:3]
# 计算所在的二进制空间
def bin_middle(number):
n, i = 1, 0
while n < number:
n = n * 2
i = i + 1
return i
def upload(request):
ctx = {}
if request.method == "POST":
file_name = str(request.FILES['file'])
if not file_name.endswith('txt'):
ctx['fail'] = 'file fORMat exist wrong!'
else:
file = request.FILES['file']
ctx['success'] = 'Successful'
input_string = tool.read_file(tool.save_file(file))
char_store, freq_store = tool.count_frequency(input_string)
char_frequency = tool.get_char_frequency(char_store, freq_store)
nodes = huf.create_nodes([item[1] for item in char_frequency])
root = huf.create_huffman_tree(nodes)
codes = huf.huffman_encoding(nodes, root)
save_file_name = tool.get_huffman_file(input_string, char_frequency, codes)
for item in zip(char_frequency, codes):
print('Character:%s freq:%-2d encoding: %s', item[0][0], item[0][1], item[1])
ctx['node'] = char_frequency
def file_iterator(files, chunk_size=512):
with open(files) as f:
while True:
c = f.read(chunk_size)
if c:
yield c
else:
break
the_file_name = tool.get_encode_ration(codes)+'_'+str(uuid.uuid1())+'.txt'
response = StreamingHttpResponse(file_iterator(save_file_name))
response['Content-Type'] = 'application/octet-stream'
response['Content-Disposition'] = 'attachment;filename="{0}"'.format(the_file_name)
return response
--结束END--
本文标题: Python语言实现哈夫曼编码
本文链接: https://lsjlt.com/news/190233.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-03-01
2024-03-01
2024-03-01
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0