返回顶部
首页 > 资讯 > 后端开发 > Python >利用Java+Selenium+OpenCV模拟实现网页滑动验证
  • 320
分享到

利用Java+Selenium+OpenCV模拟实现网页滑动验证

2024-04-02 19:04:59 320人浏览 独家记忆

Python 官方文档:入门教程 => 点击学习

摘要

目录一、需求分析二、模拟步骤1、使用selenium打开某音网页2、找到小滑块以及小滑块所在的背景图3、计算小滑块需要滑动的距离4、按住小滑块并滑动三、学习过程中比较棘手的问题1、截

目前很多网页都有滑动验证,目的就是防止不良爬虫扒他们网站的数据,我这次本着学习的目的使用Java和selenium学习解决滑动验证的问题,前前后后花了一周时间(抄代码),终于成功了某音的滑动验证!

效果展示:

一、需求分析

要模拟滑动验证总共就两步:

1、找到小滑块

2、按住小滑块,滑动一段距离

第一步很简单,直接通过xPath找到,比较重要和困难的是第二步中距离的问题,我花了那么多的时间在这次学习中,主要是耗在计算需要滑动的距离。

在面向百度编程的过程中看到了很多学习资料,大体上是同一个方法:使用opencv计算机视觉工具让两张处理过的图像进行比对,从而计算出滑动的距离。

二、模拟步骤

1、使用selenium打开某音网页

直接打开

2、找到小滑块以及小滑块所在的背景图

打开前端调式工具,F12,定位小滑块和背景图的位置,复制xpath,然后用selenium查找元素

eg: driver.findElement(By.xpath("小滑块的xpath"));

3、计算小滑块需要滑动的距离

这一部分是最重要的,所以需要重点记录,学习一次,以后遇到同样的问题就能马上解决。

步骤:

1、保存小滑块图像和小滑块背景图

如图,使用selenium可以很方便的获取到这两张图片。

2、将背景图进行指定比例和区域的剪裁

在这一步中有两个比较重要的参数:

1、小滑块的top值

2、网页当前显示的图像和原图像的大小比例,在计算滑动距离需要用到

剪裁用的是 BufferedImage的getSubimage方法,一共有四个参数

image = image.getSubimage(x, y, width, height);

x和y 为截图后图片左上角的坐标值,如果x和y都是0,那么就从原图的左上角开始截起,width和height分别是截图后图片的长和宽。

在某音的滑动验证中,x设置成小滑块的宽度,y设置为小滑块的top,top也就是小滑块距离背景图上边界的像素

width设置为背景图原来的宽度-小滑块的宽度

height设置为小滑块的高度

最后截出来的图片类似这样,一定要把背景图的缺口包含进去

3、将小滑块图像二值化

从这里开始要用到opencv(开源计算机视觉库)

首先将保存的小滑块图片转灰度,然后将转灰度的下滑快二值化,二值化就是非黑即白,了解过后才知道目前很多机器识别使用的原理和这个差不多。

代码如下:

           //小滑块Mat对象
           Mat s_mat = ImGCodecs.imread(sFile.getPath());
 
           // 转灰度图像
           Mat s_newMat = new Mat();
           Imgproc.cvtColor(s_mat, s_newMat, Imgproc.COLOR_BGR2GRAY);
           // 二值化图像
           binaryzation(s_newMat);binaryzation是一个方法,在源码中有
           Imgcodecs.imwrite(sFile.getPath(), s_newMat);

4、将二值化的小滑块和剪裁的背景图进行比对

代码我是抄的,看不懂,就不放在这了。

我研究了好久,因为没有学习过opencv,计算过程调用的几个方法我还不是很懂,但是最后的返回值需要根据实际情况来调整,要不然验证成功率几乎为0。

4、按住小滑块并滑动

滑动过程不能让程序一步走完,不然网页会认为你是爬虫,即使能滑到指定位置也会验证失败。滑动过程应该尽量模拟人工操作。

     
    public void move(ChromeDriver driver,WEBElement ele,int distance) {
        int randomTime = 0;
        if (distance > 90) {
            randomTime = 250;
        } else if (distance > 80 && distance <= 90) {
            randomTime = 150;
        }
        List<Integer> track = getMoveTrack(distance - 2);
        int moveY = 1;
        try {
            Actions actions = new Actions(driver);
            actions.clickAndHold(ele).perfORM();
            Thread.sleep(200);
            for (int i = 0; i < track.size(); i++) {
                actions.moveByOffset(track.get(i), moveY).perform();
                Thread.sleep(new Random().nextInt(300) + randomTime);
            }
            Thread.sleep(200);
            actions.release(ele).perform();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
 
    
    public static List<Integer> getMoveTrack(int distance) {
        List<Integer> track = new ArrayList<>();// 移动轨迹
        Random random = new Random();
        int current = 0;// 已经移动的距离
        int mid = distance * 4 / 5;// 减速阈值
        int a = 0;
        int move = 0;// 每次循环移动的距离
        while (true) {
            a = random.nextInt(10);
            if (current <= mid) {
                move += a;// 不断加速
            } else {
                move -= a;
            }
            if ((current + move) < distance) {
                track.add(move);
            } else {
                track.add(distance - current);
                break;
            }
            current += move;
        }
        return track;
    }

三、学习过程中比较棘手的问题

1、截图问题

我一开始截出来的图包含的小滑块缺口总是不完整的,经过一番截图参数调试后,我发现某音小滑块top的单位他丫的是em,这像素的大小用em???真不愧是某音,别家都是px,你偏偏要em......然后我又开始面向百度,最后得到的结论是默认浏览器1em = 10px,我在top *10之后还是截不到完整的小滑块缺口。

我这会直接上网页调试工具,最终调式出来1em约等于100px,最后top *100截出来的图片就对了。

2、返回结果与实际滑动距离相差太多,甚至无规律可循

好不容易把代码敲完,之后的测试却一直是失败的,无论在计算的结果加减乘除某个数值都不行。

导致原因:因为在网页上显示的图片和实际上图片大小是不同的,依靠opencv比对计算出来的滑动距离是按照原图大小计算的。

解决办法:只需要将返回值乘上显示图片与原图宽度的比例即可。

注意:因为之前在获取小滑块图像时,top的值为网页显示的大小,计算过程中是按照原图大小计算的,所以获取的top值乘以100后还要乘上原图宽度与显示图像宽度的比例。

3、openCV的下载安装

官网实在是太慢了,直接搜索安装包下载了。

四、总结

这次学习经历前后共花了一周,恰逢考试周,考试科目大多没有复习好,也不知是不是亏了,滑动验证是网页登录或者搜索会经常遇到的问题,模拟滑动解主要能够锻炼我们解决问题的能力。

图像在计算机中实际是一个个像素组成的,每一个像素包含三个数值,所以才能够对图像进行二值化、比对。比对过程是在看不懂,不过也不必每一行代码都看懂,能够解决问题才是最重要的。

以下为源码(仅用于学习交流):

package indi.imitateslide;
 
import org.apache.commons.io.FileUtils;
import org.opencv.core.*;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.openqa.selenium.By;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.WebElement;
import org.openqa.selenium.chrome.ChromeDriver;
import org.openqa.selenium.interactions.Actions;
 
import javax.imageio.ImageIO;
import java.awt.image.BufferedImage;
import java.io.File;
import java.net.URL;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
 
 

public class ImitateSlide {
    //驱动
    private ChromeDriver driver;
 
    public ImitateSlide(ChromeDriver driver){
        this.driver = driver;
    }
 
    public void slide(String url,String sliderXpath) throws Exception {
        driver.get(url);
        Thread.sleep(2000);
 
        //获取滑块
        WebElement ele = waitWebElement(driver,By.xpath(sliderXpath),500);
 
        //获取滑动背景图
        String bUrl = waitWebElement(driver,By.xpath("/
    public void move(ChromeDriver driver,WebElement ele,int distance) {
        int randomTime = 0;
        if (distance > 90) {
            randomTime = 250;
        } else if (distance > 80 && distance <= 90) {
            randomTime = 150;
        }
        List<Integer> track = getMoveTrack(distance - 2);
        int moveY = 1;
        try {
            Actions actions = new Actions(driver);
            actions.clickAndHold(ele).perform();
            Thread.sleep(200);
            for (int i = 0; i < track.size(); i++) {
                actions.moveByOffset(track.get(i), moveY).perform();
                Thread.sleep(new Random().nextInt(300) + randomTime);
            }
            Thread.sleep(200);
            actions.release(ele).perform();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
 
    
    public static List<Integer> getMoveTrack(int distance) {
        List<Integer> track = new ArrayList<>();// 移动轨迹
        Random random = new Random();
        int current = 0;// 已经移动的距离
        int mid = distance * 4 / 5;// 减速阈值
        int a = 0;
        int move = 0;// 每次循环移动的距离
        while (true) {
            a = random.nextInt(10);
            if (current <= mid) {
                move += a;// 不断加速
            } else {
                move -= a;
            }
            if ((current + move) < distance) {
                track.add(move);
            } else {
                track.add(distance - current);
                break;
            }
            current += move;
        }
        return track;
    }
 
    
    public String getDistance(String bUrl, String sUrl, int top) {
        System.loadLibrary( Core.NATIVE_LIBRARY_NAME );
        File bFile = new File("D:\\douyin_b1.jpg");
        File sFile = new File("D:\\douyin_s1.jpg");
        try {
            //将图片复制保存到指定路径
            FileUtils.copyURLToFile(new URL(bUrl), bFile);
            FileUtils.copyURLToFile(new URL(sUrl), sFile);
 
            BufferedImage bgBI = ImageIO.read(bFile);
            BufferedImage sBI = ImageIO.read(sFile);
 
            // 裁剪
            System.out.println("背景图片的宽度是: "+bgBI.getWidth());
            System.out.println("小图片的高度是:"+sBI.getHeight());
            bgBI = bgBI.getSubimage(sBI.getWidth(), top, bgBI.getWidth() - 110, sBI.getHeight());
            ImageIO.write(bgBI, "png", bFile);
 
            Mat s_mat = Imgcodecs.imread(sFile.getPath());
            Mat b_mat = Imgcodecs.imread(bFile.getPath());
 
            // 转灰度图像
            Mat s_newMat = new Mat();
            Imgproc.cvtColor(s_mat, s_newMat, Imgproc.COLOR_BGR2GRAY);
 
            // 二值化图像
            binaryzation(s_newMat);
            Imgcodecs.imwrite(sFile.getPath(), s_newMat);
 
            //让两张图片进行比对
            int result_rows = b_mat.rows() - s_mat.rows() + 1;
            int result_cols = b_mat.cols() - s_mat.cols() + 1;
            Mat g_result = new Mat(result_rows, result_cols, CvType.CV_32FC1);
            Imgproc.matchTemplate(b_mat, s_mat, g_result, Imgproc.TM_SQDIFF); // 归一化平方差匹配法
            // 归一化相关匹配法
            Core.normalize(g_result, g_result, 0, 1, Core.NORM_MINMAX, -1, new Mat());
 
            //以下看不懂
            Point matchLocation = new Point();
            Core.MinMaxLocResult mmlr = Core.minMaxLoc(g_result);
            matchLocation = mmlr.maxLoc; // 此处使用maxLoc还是minLoc取决于使用的匹配算法
            Imgproc.rectangle(b_mat, matchLocation,
                    new Point(matchLocation.x + s_mat.cols(), matchLocation.y + s_mat.rows()), new Scalar(0, 255, 0, 0));
            //返回值就是要移动的距离,在这里需要加上被裁剪掉的宽度再减去小滑块的宽度,最后乘上相应的比例。
            return "" + ((matchLocation.x + s_mat.cols()) / 1.62);
        } catch (Throwable e) {
            e.printStackTrace();
            return null;
        } finally {
            //删除保存的滑块以及背景图片
            bFile.delete();
            sFile.delete();
        }
    }
 
    
    public static void binaryzation(Mat mat) {
        int BLACK = 0;
        int WHITE = 255;
        int ucThre = 0, ucThre_new = 127;
        int nBack_count, nData_count;
        int nBack_sum, nData_sum;
        int nValue;
        int i, j;
        int width = mat.width(), height = mat.height();
        // 寻找最佳的阙值
        while (ucThre != ucThre_new) {
            nBack_sum = nData_sum = 0;
            nBack_count = nData_count = 0;
 
            for (j = 0; j < height; ++j) {
                for (i = 0; i < width; i++) {
                    nValue = (int) mat.get(j, i)[0];
 
                    if (nValue > ucThre_new) {
                        nBack_sum += nValue;
                        nBack_count++;
                    } else {
                        nData_sum += nValue;
                        nData_count++;
                    }
                }
            }
            nBack_sum = nBack_sum / nBack_count;
            nData_sum = nData_sum / nData_count;
            ucThre = ucThre_new;
            ucThre_new = (nBack_sum + nData_sum) / 2;
        }
        // 二值化处理
        int nBlack = 0;
        int nWhite = 0;
        for (j = 0; j < height; ++j) {
            for (i = 0; i < width; ++i) {
                nValue = (int) mat.get(j, i)[0];
                if (nValue > ucThre_new) {
                    mat.put(j, i, WHITE);
                    nWhite++;
                } else {
                    mat.put(j, i, BLACK);
                    nBlack++;
                }
            }
        }
        // 确保白底黑字
        if (nBlack > nWhite) {
            for (j = 0; j < height; ++j) {
                for (i = 0; i < width; ++i) {
                    nValue = (int) (mat.get(j, i)[0]);
                    if (nValue == 0) {
                        mat.put(j, i, WHITE);
                    } else {
                        mat.put(j, i, BLACK);
                    }
                }
            }
        }
    }
 
    
    private static WebElement waitWebElement(WebDriver driver, By by, int count) throws Exception {
        WebElement webElement = null;
        boolean isWait = false;
        for (int k = 0; k < count; k++) {
            try {
                webElement = driver.findElement(by);
                if (isWait)
                    System.out.println(" ok!");
                return webElement;
            } catch (org.openqa.selenium.NoSuchElementException ex) {
                isWait = true;
                if (k == 0)
                    System.out.print("waitWebElement(" + by.toString() + ")");
                else
                    System.out.print(".");
                Thread.sleep(50);
            }
        }
        if (isWait)
            System.out.println(" outTime!");
        return null;
    }
}

到此这篇关于利用Java+Selenium+OpenCV模拟实现网页滑动验证的文章就介绍到这了,更多相关Java Selenium OpenCV滑动验证内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: 利用Java+Selenium+OpenCV模拟实现网页滑动验证

本文链接: https://lsjlt.com/news/161932.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作