返回顶部
首页 > 资讯 > 后端开发 > Python >OpenCV结合selenium实现滑块验证码
  • 758
分享到

OpenCV结合selenium实现滑块验证码

2024-04-02 19:04:59 758人浏览 独家记忆

Python 官方文档:入门教程 => 点击学习

摘要

本次案例使用OpenCV和selenium来解决一下滑块验证码 先说一下思路: 弹出滑块验证码后使用selenium元素截图将验证码整个背景图截取出来 将需要滑动

本次案例使用OpenCVselenium来解决一下滑块验证码

先说一下思路:

  • 弹出滑块验证码后使用selenium元素截图将验证码整个背景图截取出来
  • 将需要滑动的小图单独截取出来,最好将小图与背景图顶部的像素距离获取到,这样可以将背景图上下多余的边框截取掉
  • 使用OpenCV将背景图和小图进行灰度处理,并对小图再次进行二值化全局阈值,这样就可以利用OpenCV在背景图中找到小图所在的位置
  • 用OpenCV获取到相差的距离后利用selenium的鼠标拖动方法进行拖拉至终点。

详细步骤:

先获取验证码背景图,selenium浏览器对象中使用screenshot方法可以将指定的元素图片截取出来


import os
from selenium import WEBdriver


browser = webdriver.Chrome()
browser.get("https://www.toutiao.com/c/user/token/MS4wLjABAAAA4EKNlqVeNTTuEdWn0VytNS8cdODKTsNNwLTxOnigzZtclro2Kylvway5mTyTUKvz/")

save_path = os.path.join(os.path.expanduser('~'), "Desktop", "background.png")
browser.find_element_by_id("element_id_name").screenshot(save_path)

截取后的验证码背景图和需要滑动的小图   如:

再将小图与背景图顶部的像素距离获取到,指的是下面图中红边的高度:

如果html元素中小图是单独存在时,那么它的高度在会定义在页面元素中,使用selenium页面元素对象的value_of_CSS_property方法可以获取到像素距离。

获取这个是因为要把背景图的上下两边多余部分进行切除,从而保留关键的图像部位,能够大幅度提高识别率。


element_object = browser.find_element_by_xpath("xpath_element")
px = element_object.value_of_css_property("top")

接下来就要对图像进行灰度处理:


import numpy
import cv2


def make_threshold(img):
    """全局阈值
    将图片二值化,去除噪点,让其黑白分明"""
    x = numpy.ones(img.shape, numpy.uint8) * 255
    y = img - x
    result, thresh = cv2.threshold(y, 127, 255, cv2.THRESH_BINARY_INV)
    # 将二值化后的结果返回
    return thresh


class ComputeDistance:
    """获取需要滑动的距离
    将验证码背景大图和需要滑动的小图进行处理,先在大图中找到相似的小图位置,再获取对应的像素偏移量"""
    def __init__(self, Background_path: str, image_to_move: str, offset_top_px: int):
        """
        :param Background_path: 验证码背景大图
        :param image_to_move: 需要滑动的小图
        :param offset_top_px: 小图距离在大图上的顶部边距(像素偏移量)
        """
        self.Background_img = cv2.imread(Background_path)
        self.offset_px = offset_top_px
        self.show_img = show_img
        small_img_data = cv2.imread(image_to_move, cv2.IMREAD_UNCHANGED)
        # 得到一个改变维度为50的乘以值
        scaleX = 50 / small_img_data.shape[1]
        # 使用最近邻插值法缩放,让xy乘以scaleX,得到缩放后shape为50x50的图片
        self.tpl_img = cv2.resize(small_img_data, (0, 0), fx=scaleX, fy=scaleX)
        self.Background_cutting = None

    def tpl_op(self):
        # 将小图转换为灰色
        tpl_gray = cv2.cvtColor(self.tpl_img, cv2.COLOR_BGR2GRAY)
        h, w = tpl_gray.shape
        # 将背景图转换为灰色
        # Background_gray = cv2.cvtColor(self.Background_img, cv2.COLOR_BGR2GRAY)
        Background_gray = cv2.cvtColor(self.Background_cutting, cv2.COLOR_BGR2GRAY)
        # 得到二值化后的小图
        threshold_img = make_threshold(tpl_gray)
        # 将小图与大图进行模板匹配,找到所对应的位置
        result = cv2.matchTemplate(Background_gray, threshold_img, cv2.TM_CCOEFF_NORMED)
        min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
        # 左上角位置
        top_left = (max_loc[0] - 5, max_loc[1] + self.offset_px)
        # 右下角位置
        bottom_right = (top_left[0] + w, top_left[1] + h)
        # 在源颜色大图中画出小图需要移动到的终点位置
        """rectangle(图片源数据, 左上角, 右下角, 颜色, 画笔厚度)"""
        cv2.rectangle(self.Background_img, top_left, bottom_right, (0, 0, 255), 2)

    def cutting_background(self):
        """切割图片的上下边框"""
        height = self.tpl_img.shape[0]
        # 将大图中上下多余部分去除,如: Background_img[40:110, :]
        self.Background_cutting = self.Background_img[self.offset_px - 10: self.offset_px + height + 10, :]

    def run(self):
        # 如果小图的长度与大图的长度一致则不用将大图进行切割,可以将self.cutting_background()注释掉
        self.cutting_background()
        return self.tpl_op()


if __name__ == '__main__':
    image_path1 = "背景图路径"
    image_path2 = "小图路径"
    distance_px = "像素距离"
    main = ComputeDistance(image_path1, image_path2, distance_px)
    main.run()

上面代码可以返回小图到凹点的距离,现在我们可以看一下灰度处理中的图片样子:

得到距离后还要对这个距离数字进行处理一下,要让它拆分成若干个小数,这么做的目的是在拖动的时候不能一下拖动到终点,

要模仿人类的手速缓缓向前行驶,不然很明显是机器在操控。

比如到终点的距离为100,那么要把它转为 [8, 6, 11, 10, 3, 6, 3, -2, 4, 0, 15, 1, 9, 6, -2, 4, 1, -2, 15, 6, -2] 类似的,列表中的数加起来正好为100.

最简单的转换:


def handle_distance(distance):
    """将直线距离转为缓慢的轨迹"""
    import random
    slow_distance = []
    while sum(slow_distance) <= distance:
        slow_distance.append(random.randint(-2, 15))

    if sum(slow_distance) != distance:
        slow_distance.append(distance - sum(slow_distance))
    return slow_distance

有了到终点的距离,接下来就开始拖动吧:


import time
from random import randint
from selenium.webdriver.common.action_chains import ActionChains


def move_slider(website, slider, track, **kwargs):
    """将滑块移动到终点位置
    :param website: selenium页面对象
    :param slider: selenium页面中滑块元素对象
    :param track: 到终点所需的距离
    """
    name = kwargs.get('name', '滑块')

    try:
        if track[0] > 200:
            return track[0]
        # 点击滑块元素并拖拽
        ActionChains(website).click_and_hold(slider).perform()
        time.sleep(0.15)
        for i in track:
            # 随机上下浮动鼠标
            ActionChains(website).move_by_offset(xoffset=i, yoffset=randint(-2, 2)).perform()
        # 释放元素
        time.sleep(1)
        ActionChains(website).release(slider).perform()
        time.sleep(1)
        # 随机拿开鼠标
        ActionChains(website).move_by_offset(xoffset=randint(200, 300), yoffset=randint(200, 300)).perform()
        print(f'[网页] 拖拽 {name}')
        return True
    except Exception as e:
        print(f'[网页] 拖拽 {name} 失败 {e}')

教程结束,让我们结合上面代码做一个案例吧。

访问今日头条某博主的主页,直接打开主页的链接会出现验证码。

下面代码 使用pip安装好相关依赖库后可直接运行:

调用ComputeDistance类时,参数 show_img=True 可以在拖动验证码前进行展示背景图识别终点后的区域在哪里, 如:


distance_obj = ComputeDistance(background_path, small_path, px, show_img=True)

OK,下面为案例代码: 


import os
import time
import requests
import cv2
import numpy
from random import randint

from selenium import webdriver
from selenium.webdriver.common.action_chains import ActionChains


def show_image(img_array, name='img', resize_flag=False):
    """展示图片"""
    maxHeight = 540
    maxWidth = 960
    scaleX = maxWidth / img_array.shape[1]
    scaleY = maxHeight / img_array.shape[0]
    scale = min(scaleX, scaleY)
    if resize_flag and scale < 1:
        img_array = cv2.resize(img_array, (0, 0), fx=scale, fy=scale)
    cv2.imshow(name, img_array)
    cv2.waiTKEy(0)
    cv2.destroyWindow(name)


def make_threshold(img):
    """全局阈值
    将图片二值化,去除噪点,让其黑白分明"""
    x = numpy.ones(img.shape, numpy.uint8) * 255
    y = img - x
    result, thresh = cv2.threshold(y, 127, 255, cv2.THRESH_BINARY_INV)
    # 将二值化后的结果返回
    return thresh


def move_slider(website, slider, track, **kwargs):
    """将滑块移动到终点位置
    :param website: selenium页面对象
    :param slider: selenium页面中滑块元素对象
    :param track: 到终点所需的距离
    """
    name = kwargs.get('name', '滑块')

    try:
        if track[0] > 200:
            return track[0]
        # 点击滑块元素并拖拽
        ActionChains(website).click_and_hold(slider).perform()
        time.sleep(0.15)
        for i in track:
            # 随机上下浮动鼠标
            ActionChains(website).move_by_offset(xoffset=i, yoffset=randint(-2, 2)).perform()
        # 释放元素
        time.sleep(1)
        ActionChains(website).release(slider).perform()
        time.sleep(1)
        # 随机拿开鼠标
        ActionChains(website).move_by_offset(xoffset=randint(200, 300), yoffset=randint(200, 300)).perform()
        print(f'[网页] 拖拽 {name}')
        return True
    except Exception as e:
        print(f'[网页] 拖拽 {name} 失败 {e}')


class ComputeDistance:
    """获取需要滑动的距离
    将验证码背景大图和需要滑动的小图进行处理,先在大图中找到相似的小图位置,再获取对应的像素偏移量"""
    def __init__(self, Background_path: str, image_to_move: str, offset_top_px: int, show_img=False):
        """
        :param Background_path: 验证码背景大图
        :param image_to_move: 需要滑动的小图
        :param offset_top_px: 小图距离在大图上的顶部边距(像素偏移量)
        :param show_img: 是否展示图片
        """
        self.Background_img = cv2.imread(Background_path)
        self.offset_px = offset_top_px
        self.show_img = show_img
        small_img_data = cv2.imread(image_to_move, cv2.IMREAD_UNCHANGED)
        # 得到一个改变维度为50的乘以值
        scaleX = 50 / small_img_data.shape[1]
        # 使用最近邻插值法缩放,让xy乘以scaleX,得到缩放后shape为50x50的图片
        self.tpl_img = cv2.resize(small_img_data, (0, 0), fx=scaleX, fy=scaleX)
        self.Background_cutting = None

    def show(self, img):
        if self.show_img:
            show_image(img)

    def tpl_op(self):
        # 将小图转换为灰色
        tpl_gray = cv2.cvtColor(self.tpl_img, cv2.COLOR_BGR2GRAY)
        h, w = tpl_gray.shape
        # 将背景图转换为灰色
        # Background_gray = cv2.cvtColor(self.Background_img, cv2.COLOR_BGR2GRAY)
        Background_gray = cv2.cvtColor(self.Background_cutting, cv2.COLOR_BGR2GRAY)
        # 得到二值化后的小图
        threshold_img = make_threshold(tpl_gray)
        # 将小图与大图进行模板匹配,找到所对应的位置
        result = cv2.matchTemplate(Background_gray, threshold_img, cv2.TM_CCOEFF_NORMED)
        min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result)
        # 左上角位置
        top_left = (max_loc[0] - 5, max_loc[1] + self.offset_px)
        # 右下角位置
        bottom_right = (top_left[0] + w, top_left[1] + h)
        # 在源颜色大图中画出小图需要移动到的终点位置
        """rectangle(图片源数据, 左上角, 右下角, 颜色, 画笔厚度)"""
        cv2.rectangle(self.Background_img, top_left, bottom_right, (0, 0, 255), 2)
        if self.show_img:
            show_image(self.Background_img)
        return top_left

    def cutting_background(self):
        """切割图片的上下边框"""
        height = self.tpl_img.shape[0]
        # 将大图中上下多余部分去除,如: Background_img[40:110, :]
        self.Background_cutting = self.Background_img[self.offset_px - 10: self.offset_px + height + 10, :]

    def run(self):
        # 如果小图的长度与大图的长度一致则不用将大图进行切割,可以将self.cutting_background()注释掉
        self.cutting_background()
        return self.tpl_op()


class TodayNews(object):
    def __init__(self):
        self.url = "Https://www.toutiao.com/c/user/token/" \
                   "MS4wLjABAAAA4EKNlqVeNTTuEdWn0VytNS8cdODKTsNNwLTxOnigzZtclro2Kylvway5mTyTUKvz/"
        self.process_folder = os.path.join(os.path.expanduser('~'), "Desktop", "today_news")
        self.background_path = os.path.join(self.process_folder, "background.png")
        self.small_path = os.path.join(self.process_folder, "small.png")
        self.small_px = None
        self.xpath = {}
        self.browser = None

    def check_file_exist(self):
        """检查流程目录是否存在"""
        if not os.path.isdir(self.process_folder):
            os.mkdir(self.process_folder)

    def start_browser(self):
        """启动浏览器"""
        self.browser = webdriver.Chrome()
        self.browser.maximize_window()

    def close_browser(self):
        self.browser.quit()

    def wait_element_loaded(self, xpath: str, timeout=10, close_browser=True):
        """等待页面元素加载完成
        :param xpath: xpath表达式
        :param timeout: 最长等待超时时间
        :param close_browser: 元素等待超时后是否关闭浏览器
        :return: Boolean
        """
        now_time = int(time.time())
        while int(time.time()) - now_time < timeout:
            # noinspection PyBroadException
            try:
                element = self.browser.find_element_by_xpath(xpath)
                if element:
                    return True
                time.sleep(1)
            except Exception:
                pass
        else:
            if close_browser:
                self.close_browser()
            # print("查找页面元素失败,如果不存在网络问题请尝试修改xpath表达式")
            return False

    def add_page_element(self):
        self.xpath['background_img'] = '//div[@role="dialog"]/div[2]/img[1]'
        self.xpath['small_img'] = '//div[@role="dialog"]/div[2]/img[2]'
        self.xpath['slider_button'] = '//div[@id="secsdk-captcha-drag-wrapper"]/div[2]'

    def process_main(self):
        """处理页面内容"""
        self.browser.get(self.url)

        for _ in range(10):
            if self.wait_element_loaded(self.xpath['background_img'], timeout=5, close_browser=False):
                time.sleep(1)
                # 截图
                self.browser.find_element_by_xpath(self.xpath['background_img']).screenshot(self.background_path)
                small_img = self.browser.find_element_by_xpath(self.xpath['small_img'])
                # 获取小图片的URL链接
                small_url = small_img.get_attribute("src")
                # 获取小图片距离背景图顶部的像素距离
                self.small_px = small_img.value_of_css_property("top").replace("px", "").split(".")[0]

                response = requests.get(small_url)
                if response.ok:
                    with open(self.small_path, "wb") as file:
                        file.write(response.content)

                time.sleep(1)
                # 如果没滑动成功则刷新页面重试
                if not self.process_slider():
                    self.browser.refresh()
                    continue
            else:
                break

    @staticmethod
    def handle_distance(distance):
        """将直线距离转为缓慢的轨迹"""
        import random
        slow_distance = []
        while sum(slow_distance) <= distance:
            slow_distance.append(random.randint(-2, 15))

        if sum(slow_distance) != distance:
            slow_distance.append(distance - sum(slow_distance))
        return slow_distance

    def process_slider(self):
        """处理滑块验证码"""

        distance_obj = ComputeDistance(self.background_path, self.small_path, int(self.small_px), show_img=False)
        # 获取移动所需的距离
        distance = distance_obj.run()

        track = self.handle_distance(distance[0])
        track.append(-2)
        slider_element = self.browser.find_element_by_xpath(self.xpath['slider_button'])

        move_slider(self.browser, slider_element, track)
        time.sleep(2)

        # 如果滑动完成则返回True
        if not self.wait_element_loaded(self.xpath['slider_button'], timeout=2, close_browser=False):
            return True
        else:
            return False

    def run(self):
        self.check_file_exist()
        self.start_browser()
        self.add_page_element()
        self.process_main()
        # self.close_browser()


if __name__ == '__main__':
    main = TodayNews()
    main.run()

到此这篇关于OpenCV结合selenium实现滑块验证码的文章就介绍到这了,更多相关OpenCV selenium滑块验证码内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: OpenCV结合selenium实现滑块验证码

本文链接: https://lsjlt.com/news/132489.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • OpenCV结合selenium实现滑块验证码
    本次案例使用OpenCV和selenium来解决一下滑块验证码 先说一下思路: 弹出滑块验证码后使用selenium元素截图将验证码整个背景图截取出来 将需要滑动...
    99+
    2024-04-02
  • selenium+opencv实现滑块验证码的登陆
    目录环境selenium登录网站requests抓取验证码图片OpenCV识别缺口位置模拟拖动滑块脚本示例:很多网站登录登陆时都要用到滑块验证码,在某些场景例如使用爬虫爬取信息时常常...
    99+
    2023-05-15
    selenium opencv滑块验证码 opencv滑块验证码
  • 怎么使用selenium+opencv实现滑块验证码的登陆
    本文小编为大家详细介绍“怎么使用selenium+opencv实现滑块验证码的登陆”,内容详细,步骤清晰,细节处理妥当,希望这篇“怎么使用selenium+opencv实现滑块验证码的登陆”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入...
    99+
    2023-07-06
  • 用selenium解决滑块验证码
    前言 因为种种原因没能实现愿景的目标,在这里记录一下中间结果,也算是一个收场吧。这篇博客主要是用selenium解决滑块验证码的个别案列。 思路: 用selenium打开浏览器指定网站将残缺块图片和背...
    99+
    2023-09-04
    selenium chrome python
  • 用selenium解决滑块验证码的实现步骤
    目录前言实现步骤1. 用selenium打开浏览器浏览指定网站1.1 找到chromedriver.exe的路径1.2 代码2.将残缺块图片和背景图片下载到本地2.1 找到图片位置2...
    99+
    2023-02-14
    selenium 滑动验证码 selenium 滑块验证 滑块验证码自动识别
  • JavaScript实现滑块验证码
    本文实例为大家分享了JavaScript实现滑块验证码的具体代码,供大家参考,具体内容如下 效果:鼠标在底部滑块上按下按住不松拖动可以移动滑块,上面大图里面带有小图背景的滑块也会跟随...
    99+
    2024-04-02
  • 利用Java+Selenium+OpenCV模拟实现网页滑动验证
    目录一、需求分析二、模拟步骤1、使用selenium打开某音网页2、找到小滑块以及小滑块所在的背景图3、计算小滑块需要滑动的距离4、按住小滑块并滑动三、学习过程中比较棘手的问题1、截...
    99+
    2024-04-02
  • python+selenium行为链登录12306(滑动验证码滑块)
    使用python网络爬虫登录12306,网站界面如下。因为网站的反爬是不断升级的,以下代码虽然当前可用,但早晚必将会不再能满足登录需求。但是知识的价值,是不容置疑的。 from s...
    99+
    2024-04-02
  • Java实现滑块拼图验证码
    本文实例为大家分享了Java实现滑块拼图验证码的具体代码,供大家参考,具体内容如下 1、后端随机生成抠图和带有抠图阴影的背景图片,后台保存随机抠图位置坐标 2、前端实现滑动交互,将抠...
    99+
    2024-04-02
  • Python实现滑块验证码详解
    本节要讲解如下图所示的滑块验证码(更为复杂的滑动拼图验证码在下一篇介绍)。这种验证码机制比较简单:将滑块拖动到滑轨的最右端即可完成验证,如下图所示。如果未将滑块拖动到滑轨的最右端,则...
    99+
    2024-04-02
  • JS 简单实现滑块验证码
    目录开篇:一、实现效果styleScript二、总结与思考开篇: 拖动底部滑块,实现滑块验证码功能 一、实现效果 style *{ margin: 0; padd...
    99+
    2023-05-14
    JS 滑块验证码 JS 验证码
  • JS怎么实现滑块验证码
    本篇内容介绍了“JS怎么实现滑块验证码”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!style*{   &nb...
    99+
    2023-07-05
  • python 密码验证(滑块验证)
    目录题目描述:解题思路/算法分析/问题及解决实验代码题目描述: (1)模拟登陆界面,判别用户名和密码,给出合适的提示,如果超过三次,锁定输入。用代替密码;或者最新输入显示,前面的变成...
    99+
    2024-04-02
  • Flutter实现滑动块验证码功能
    Flutter实现滑动块验证码功能,供大家参考,具体内容如下 本文实现的是一个用于登录时,向右滑动滑动块到最右边完成验证的一个功能。当滑动未到最右边时,滑动块回弹回左边起始位置。 ...
    99+
    2024-04-02
  • 怎么用JavaScript实现滑块验证码
    本篇内容主要讲解“怎么用JavaScript实现滑块验证码”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“怎么用JavaScript实现滑块验证码”吧!效果:鼠标在底部滑块上按下按住不松拖动可以移...
    99+
    2023-06-25
  • 利用Java+Selenium+OpenCV模拟如何实现网页滑动验证
    本篇文章给大家分享的是有关利用Java+Selenium+OpenCV模拟如何实现网页滑动验证,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。目前很多网页都有滑动验证,目的就是防...
    99+
    2023-06-26
  • js canvas实现滑块验证
    本文实例为大家分享了js canvas实现滑块验证的具体代码,供大家参考,具体内容如下 滑块验证 话不多说先上代码想用的小伙伴可以直接使用,想了解的我后面会说下我的思路 <...
    99+
    2024-04-02
  • Java + Selenium + OpenCV解决自动化测试中的滑块验证问题
    目录1、滑块验证思路2、使用OpenCV进行图片解析2.1 OpenCV引入项目2.2 实现图片解析,计算所需距离2.3 算法解析说明3、Selenium处理滑块滑动4、最终效果最近...
    99+
    2024-04-02
  • python实现腾讯滑块验证码识别
    腾讯滑块验证码识别,识别凹槽的x轴位置,mock滑块的加速度。该项目公开API,提供识别和加速度模拟部分,第二部分模拟滑动进行识别返回数据请求 项目地址:https://github.com/zhaojunlike/...
    99+
    2022-06-02
    python 验证码识别 python 滑块验证码识别 python 腾讯验证码
  • Python实现滑块拼图验证码详解
    目录初级版滑块拼图验证码补充知识点高级版滑动拼图验证码滑动拼图验证码可以算是滑块验证码的进阶版本,其验证机制相对复杂。本节将介绍两种滑动拼图验证码:初级版和高级版本。 初级版滑块拼...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作