AUTOVACUUM AUTOVACUUM 简介 postgresql 提供了 AUTOVACUUM 的机制。 autovacuum 不仅会自动进行 VACUUM,也会自动进行 ANALYZE,以分析统计信息用于执行计划。 在 postg
postgresql 提供了 AUTOVACUUM 的机制。
autovacuum 不仅会自动进行 VACUUM,也会自动进行 ANALYZE,以分析统计信息用于执行计划。
在 postgresql.conf 中,autovacuum
参数已默认打开。
autovacuum = on
autovacuum 打开后,会有一个 autovacuum launcher 进程
$ ps -ef|grep postgres|grep autovacuum|grep -v grep
postgres 28398 28392 0 Nov13 ? 00:00:19 postgres: autovacuum launcher
在 pg_stat_activity
也可以看到 backend_type
为 autovacuum launcher 的连接:
psql -d alvindb -U postgres
alvindb=# x
Expanded display is on.
alvindb=# SELECT * FROM pg_stat_activity WHERE backend_type = "autovacuum launcher";
-[ RECORD 1 ]----+------------------------------
datid |
datname |
pid | 28398
usesysid |
usename |
application_name |
client_addr |
client_hostname |
client_port |
backend_start | 2021-11-13 23:18:00.406618+08
xact_start |
query_start |
state_change |
wait_event_type | Activity
wait_event | AutoVacuumMain
state |
backend_xid |
backend_xmin |
query |
backend_type | autovacuum launcher
那么 AUTOVACUUM 多久运行一次?
autovacuum launcher 会每隔 autovacuum_naptime
,创建 autovacuum worker,检查是否需要做 autovacuum。
psql -d alvindb -U postgres
alvindb=# SELECT * FROM pg_stat_activity WHERE backend_type = "autovacuum worker";
-[ RECORD 1 ]----+------------------------------
datid | 13220
datname | postgres
pid | 32457
usesysid |
usename |
application_name |
client_addr |
client_hostname |
client_port |
backend_start | 2021-11-06 23:32:53.880281+08
xact_start |
query_start |
state_change |
wait_event_type |
wait_event |
state |
backend_xid |
backend_xmin |
query |
backend_type | autovacuum worker
autovacuum_naptime 默认为 1min:
#autovacuum_naptime = 1min # time between autovacuum runs
autovacuum 又是根据什么标准决定是否进行 VACUUM 和 ANALYZE 呢?
当 autovacuum worker 检查到,
dead tuples 大于 vacuum threshold 时,会自动进行 VACUUM。
vacuum threshold 公式如下:
vacuum threshold = vacuum base threshold + vacuum scale factor * number of tuples
增删改的行数据大于 analyze threshold 时,会自动进行 ANALYZE。
analyze threshold 公式如下:
analyze threshold = analyze base threshold + analyze scale factor * number of tuples
对应 postgresql.conf 中相关参数如下:
#autovacuum_vacuum_threshold = 50 # min number of row updates before vacuum
#autovacuum_analyze_threshold = 50 # min number of row updates before analyze
#autovacuum_vacuum_scale_factor = 0.2 # fraction of table size before vacuum
#autovacuum_analyze_scale_factor = 0.1 # fraction of table size before analyze
dead tuples 为 pg_stat_user_tables.n_dead_tup
(Estimated number of dead rows)
alvindb=> SELECT * FROM pg_stat_user_tables WHERE schemaname = "alvin" AND relname = "tb_test_vacuum";
-[ RECORD 1 ]-------+---------------
relid | 37409
schemaname | alvin
relname | tb_test_vacuum
seq_scan | 2
seq_tup_read | 0
idx_scan | 0
idx_tup_fetch | 0
n_tup_ins | 0
n_tup_upd | 0
n_tup_del | 0
n_tup_hot_upd | 0
n_live_tup | 0
n_dead_tup | 0
n_mod_since_analyze | 0
last_vacuum |
last_autovacuum |
last_analyze |
last_autoanalyze |
vacuum_count | 0
autovacuum_count | 0
analyze_count | 0
autoanalyze_count | 0
那么 number of tuples 是哪个列的值?是 pg_stat_user_tables.n_live_tup
(Estimate number of live rows)?还是实际的 count 值?
其实是 pg_class.reltuples
(Estimate number of live rows in the table used by the planner)。
alvindb=> SELECT u.schemaname,u.relname,c.reltuples,u.n_live_tup,u.n_mod_since_analyze,u.n_dead_tup,u.last_autoanalyze,u.last_autovacuum
FROM
pg_stat_user_tables u, pg_class c, pg_namespace n
WHERE n.oid = c.relnamespace
AND c.relname = u.relname
AND n.nspname = u.schemaname
AND u.schemaname = "alvin"
AND u.relname = "tb_test_vacuum"
-[ RECORD 1 ]-------+---------------
schemaname | alvin
relname | tb_test_vacuum
reltuples | 0
n_live_tup | 0
n_mod_since_analyze | 0
n_dead_tup | 0
last_autoanalyze |
last_autovacuum |
所以 AUTO VACUUM 具体公式如下:
pg_stat_user_tables.n_dead_tup > autovacuum_vacuum_threshold + autovacuum_vacuum_scale_factor * pg_class.reltuples
同理,AUTO ANALYZE 具体公式如下:
pg_stat_user_tables.n_mod_since_analyze > autovacuum_analyze_threshold + autovacuum_analyze_scale_factor * pg_class.reltuples
下面实测一下 autovacuum。为了测试方便,autovacuum_naptime
临时修改为 5s,这样触发了临界条件,只需要等 5s 就能看到效果,而不是等 1min。
修改参数如下:
autovacuum_naptime = 5s
autovacuum_vacuum_threshold = 100 # min number of row updates before vacuum
autovacuum_analyze_threshold = 100 # min number of row updates before analyze
autovacuum_vacuum_scale_factor = 0.2 # fraction of table size before vacuum
autovacuum_analyze_scale_factor = 0.1 # fraction of table size before analyze
接下来通过一步一步测试,精准触发 autovacuum。
为了方便测试,通过如下 AUTOVACUUM 计算 SQL 计算需要删除或修改的数据行数。
alvindb=> WITH v AS (
SELECT * FROM
(SELECT setting AS autovacuum_vacuum_scale_factor FROM pg_settings WHERE name = "autovacuum_vacuum_scale_factor") vsf,
(SELECT setting AS autovacuum_vacuum_threshold FROM pg_settings WHERE name = "autovacuum_vacuum_threshold") vth,
(SELECT setting AS autovacuum_analyze_scale_factor FROM pg_settings WHERE name = "autovacuum_analyze_scale_factor") asf,
(SELECT setting AS autovacuum_analyze_threshold FROM pg_settings WHERE name = "autovacuum_analyze_threshold") ath
),
t AS (
SELECT
c.reltuples,u.*
FROM
pg_stat_user_tables u, pg_class c, pg_namespace n
WHERE n.oid = c.relnamespace
AND c.relname = u.relname
AND n.nspname = u.schemaname
AND u.schemaname = "alvin"
AND u.relname = "tb_test_vacuum"
)
SELECT
schemaname,
relname,
autovacuum_vacuum_scale_factor,
autovacuum_vacuum_threshold,
autovacuum_analyze_scale_factor,
autovacuum_analyze_threshold,
n_live_tup,
reltuples,
autovacuum_analyze_trigger,
n_mod_since_analyze,
autovacuum_analyze_trigger - n_mod_since_analyze AS rows_to_mod_before_auto_analyze,
last_autoanalyze,
autovacuum_vacuum_trigger,
n_dead_tup,
autovacuum_vacuum_trigger - n_dead_tup AS rows_to_delete_before_auto_vacuum,
last_autovacuum
FROM (
SELECT
schemaname,
relname,
autovacuum_vacuum_scale_factor,
autovacuum_vacuum_threshold,
autovacuum_analyze_scale_factor,
autovacuum_analyze_threshold,
floor(autovacuum_analyze_scale_factor::numeric * reltuples) + 1 + autovacuum_analyze_threshold::int AS autovacuum_analyze_trigger,
floor(autovacuum_vacuum_scale_factor::numeric * reltuples) + 1 + autovacuum_vacuum_threshold::int AS autovacuum_vacuum_trigger,
reltuples,
n_live_tup,
n_dead_tup,
n_mod_since_analyze,
last_autoanalyze,
last_autovacuum
FROM
v,
t) a;
-[ RECORD 1 ]---------------------+---------------
schemaname | alvin
relname | tb_test_vacuum
autovacuum_vacuum_scale_factor | 0.2
autovacuum_vacuum_threshold | 100
autovacuum_analyze_scale_factor | 0.1
autovacuum_analyze_threshold | 100
n_live_tup | 0
reltuples | 0
autovacuum_analyze_trigger | 101
n_mod_since_analyze | 0
rows_to_mod_before_auto_analyze | 101
last_autoanalyze |
autovacuum_vacuum_trigger | 101
n_dead_tup | 0
rows_to_delete_before_auto_vacuum | 101
last_autovacuum |
根据计算公式,
pg_stat_user_tables.n_mod_since_analyze > 100 + 0.1 * 0
即当修改的行数大于 100,即为 101 时,将触发 AUTO ANALYZE。
先插入 100 行数据,
alvindb=> SELECT clock_timestamp();
clock_timestamp
-------------------------------
2021-11-06 20:45:57.669183+08
(1 row)
alvindb=> INSERT INTO tb_test_vacuum(test_num) SELECT gid FROM generate_series(1,100,1) gid;
INSERT 0 100
此时,通过如下计算可以看到,再更新 1 行,将触发 AUTO ANALYZE。
schemaname | alvin
relname | tb_test_vacuum
autovacuum_vacuum_scale_factor | 0.2
autovacuum_vacuum_threshold | 100
autovacuum_analyze_scale_factor | 0.1
autovacuum_analyze_threshold | 100
n_live_tup | 100
reltuples | 0
autovacuum_analyze_trigger | 101
n_mod_since_analyze | 100
rows_to_mod_before_auto_analyze | 1
last_autoanalyze |
autovacuum_vacuum_trigger | 101
n_dead_tup | 0
rows_to_delete_before_auto_vacuum | 101
last_autovacuum |
此时,统计信息为空:
alvindb=> SELECT * FROM pg_stats WHERE schemaname = "alvin" AND tablename = "tb_test_vacuum";
(0 rows)
现在插入最后一条数据,
alvindb=> SELECT clock_timestamp();
clock_timestamp
-------------------------------
2021-11-06 20:46:31.034422+08
(1 row)
alvindb=> INSERT INTO tb_test_vacuum(test_num) SELECT gid FROM generate_series(101,101,1) gid;
INSERT 0 1
执行 AUTOVACUUM 计算 SQL, 可以看到,已触发 AUTO ANALYZE:
schemaname | alvin
relname | tb_test_vacuum
autovacuum_vacuum_scale_factor | 0.2
autovacuum_vacuum_threshold | 100
autovacuum_analyze_scale_factor | 0.1
autovacuum_analyze_threshold | 100
n_live_tup | 101
reltuples | 101
autovacuum_analyze_trigger | 111
n_mod_since_analyze | 0
rows_to_mod_before_auto_analyze | 111
last_autoanalyze | 2021-11-06 20:46:39.88796+08
autovacuum_vacuum_trigger | 121
n_dead_tup | 0
rows_to_delete_before_auto_vacuum | 121
last_autovacuum |
可以看到表 tb_test_vacuum
统计信息已更新:
alvindb=> SELECT * FROM pg_stats WHERE schemaname = "alvin" AND tablename = "tb_test_vacuum";
查看 PostgreSQL 日志,可以看到
[ 2021-11-06 20:46:39.887 CST 6816 6186792f.1aa0 1 3/173948 13179359]LOG: automatic analyze of table "alvindb.alvin.tb_test_vacuum" system usage: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s
PostgreSQL 日志中是否记录 AUTOVACUUM 由参数 log_autovacuum_min_duration
控制,默认关闭。
#log_autovacuum_min_duration = -1 # -1 disables, 0 logs all actions and
# their durations, > 0 logs only
# actions running at least this number
# of milliseconds.
可将该参数改为 0,即记录所有的 AUTOVACUUM 操作。
log_autovacuum_min_duration = 0
从 AUTOVACUUM 计算 SQL 的执行结果得知,再修改 111 行将触发 AUTO ANALYZE。
rows_to_mod_before_auto_analyze | 111
rows_to_delete_before_auto_vacuum | 121
先修改 110 行,并 sleep 6s。
alvindb=> SELECT clock_timestamp();
clock_timestamp
------------------------------
2021-11-06 20:47:30.75553+08
(1 row)
alvindb=> INSERT INTO tb_test_vacuum(test_num) SELECT gid FROM generate_series(102,111,1) gid;
INSERT 0 10
alvindb=> UPDATE tb_test_vacuum SET test_num = test_num WHERE test_num <= 100;
UPDATE 100
alvindb=> SELECT pg_sleep(6);
pg_sleep
----------
(1 row)
alvindb=> SELECT clock_timestamp();
clock_timestamp
-------------------------------
2021-11-06 20:47:43.465651+08
(1 row)
从 AUTOVACUUM 计算 SQL 的执行结果得知,修改后 110 行并 sleep 6s (前面已将 autovacuum_naptime
设置成了 5s)后,AUTO ANALYZE 并未触发。
schemaname | alvin
relname | tb_test_vacuum
autovacuum_vacuum_scale_factor | 0.2
autovacuum_vacuum_threshold | 100
autovacuum_analyze_scale_factor | 0.1
autovacuum_analyze_threshold | 100
n_live_tup | 111
reltuples | 101
autovacuum_analyze_trigger | 111
n_mod_since_analyze | 110
rows_to_mod_before_auto_analyze | 1
last_autoanalyze | 2021-11-06 20:46:39.88796+08
autovacuum_vacuum_trigger | 121
n_dead_tup | 100
rows_to_delete_before_auto_vacuum | 21
last_autovacuum |
再修改 1 行预计将触发 AUTO ANALYZE。此时删除一行:
alvindb=> SELECT clock_timestamp();
clock_timestamp
-------------------------------
2021-11-06 20:47:55.746411+08
(1 row)
alvindb=> DELETE FROM tb_test_vacuum WHERE test_id = 111;
DELETE 1
alvindb=> SELECT pg_sleep(6);
pg_sleep
----------
(1 row)
alvindb=> SELECT clock_timestamp();
clock_timestamp
-------------------------------
2021-11-06 20:48:01.796389+08
(1 row)
从 AUTOVACUUM 计算 SQL 的查询结果中的 last_autoanalyze
得知,已精准触发 AUTO ANALYZE。
并且从 rows_to_delete_before_auto_vacuum
得知,预计删除 22 行后,将触发 AUTO VACUUM。
schemaname | alvin
relname | tb_test_vacuum
autovacuum_vacuum_scale_factor | 0.2
autovacuum_vacuum_threshold | 100
autovacuum_analyze_scale_factor | 0.1
autovacuum_analyze_threshold | 100
n_live_tup | 110
reltuples | 110
autovacuum_analyze_trigger | 112
n_mod_since_analyze | 0
rows_to_mod_before_auto_analyze | 112
last_autoanalyze | 2021-11-06 20:48:04.928899+08
autovacuum_vacuum_trigger | 123
n_dead_tup | 101
rows_to_delete_before_auto_vacuum | 22
last_autovacuum |
先删除 (UPDATE = DELETE + INSERT) 21 行:
alvindb=> SELECT clock_timestamp();
clock_timestamp
-------------------------------
2021-11-06 20:48:32.313706+08
(1 row)
alvindb=> UPDATE tb_test_vacuum SET test_num = test_num WHERE test_num <= 21;
UPDATE 21
alvindb=> SELECT pg_sleep(6);
pg_sleep
----------
(1 row)
alvindb=> SELECT clock_timestamp();
clock_timestamp
-------------------------------
2021-11-06 20:48:38.454997+08
(1 row)
从 AUTOVACUUM 计算 SQL 的查询结果中的 last_autovacuum
得知,还未触发 AUTO VACUUM。
并且从 rows_to_delete_before_auto_vacuum
得知,预计删除 1 行后,将触发 AUTO VACUUM。
schemaname | alvin
relname | tb_test_vacuum
autovacuum_vacuum_scale_factor | 0.2
autovacuum_vacuum_threshold | 100
autovacuum_analyze_scale_factor | 0.1
autovacuum_analyze_threshold | 100
n_live_tup | 110
reltuples | 110
autovacuum_analyze_trigger | 112
n_mod_since_analyze | 21
rows_to_mod_before_auto_analyze | 91
last_autoanalyze | 2021-11-06 20:48:04.928899+08
autovacuum_vacuum_trigger | 123
n_dead_tup | 122
rows_to_delete_before_auto_vacuum | 1
last_autovacuum |
此时删除一行
alvindb=> SELECT clock_timestamp();
clock_timestamp
-------------------------------
2021-11-06 20:48:39.174009+08
(1 row)
alvindb=> DELETE FROM tb_test_vacuum WHERE test_id = 110;
DELETE 1
alvindb=> SELECT pg_sleep(6);
pg_sleep
----------
(1 row)
alvindb=> SELECT clock_timestamp();
clock_timestamp
-------------------------------
2021-11-06 20:48:45.213537+08
(1 row)
从 AUTOVACUUM 计算 SQL 的查询结果中的 last_autovacuum
得知,已精准触发 AUTO VACUUM!
schemaname | alvin
relname | tb_test_vacuum
autovacuum_vacuum_scale_factor | 0.2
autovacuum_vacuum_threshold | 100
autovacuum_analyze_scale_factor | 0.1
autovacuum_analyze_threshold | 100
n_live_tup | 109
reltuples | 109
autovacuum_analyze_trigger | 111
n_mod_since_analyze | 22
rows_to_mod_before_auto_analyze | 89
last_autoanalyze | 2021-11-06 20:48:04.928899+08
autovacuum_vacuum_trigger | 122
n_dead_tup | 0
rows_to_delete_before_auto_vacuum | 122
last_autovacuum | 2021-11-06 20:48:49.914345+08
查看 PostgreSQL 日志,可以看到
[ 2021-11-06 20:48:49.914 CST 7207 618679b1.1c27 1 3/174162 0]LOG: automatic vacuum of table "alvindb.alvin.tb_test_vacuum": index scans: 1
pages: 0 removed, 1 remain, 0 skipped due to pins, 0 skipped frozen
tuples: 123 removed, 109 remain, 0 are dead but not yet removable, oldest xmin: 13179371
buffer usage: 59 hits, 4 misses, 4 dirtied
avg read rate: 121.832 MB/s, avg write rate: 121.832 MB/s
system usage: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s
buffer usage: 59 hits, 4 misses, 4 dirtied
avg read rate: 121.832 MB/s, avg write rate: 121.832 MB/s
system usage: CPU: user: 0.00 s, system: 0.00 s, elapsed: 0.00 s
那么问题来了,autovacuum_vacuum_scale_factor
为 0.2 对于所有的表都合适吗?1 亿数据量的表有 2000 万 dead tuples 以上才会触发 AUTO VACUUM,这意味着表越大越不容易触发 AUTO VACUUM。怎么可以解决这个问题呢?
可以根据需要,在表上设置合理的 autovacuum_vacuum_scale_factor
。对于大表,可以设置小点的 autovacuum_vacuum_scale_factor
,如 0.1。
下面带你一步一步设置并精确触发表级的 AUTO ANALYZE 和 AUTO VACUUM。
这次将采用大一点的数据量进行测试。考虑到手动创建表,插入数据等比较麻烦,接下来测试利用 PostgreSQL 自带的工具 pgbench。
使用 pgbench 创建 10 万行数据的测试表:
$ pgbench -i alvindb
dropping old tables...
creating tables...
generating data...
100000 of 100000 tuples (100%) done (elapsed 0.38 s, remaining 0.00 s)
vacuuming...
creating primary keys...
done.
修改表级参数:
alvindb=> ALTER TABLE pgbench_accounts SET (autovacuum_vacuum_scale_factor = 0.1, autovacuum_vacuum_threshold = 2000);
ALTER TABLE
alvindb=> ALTER TABLE pgbench_accounts SET (autovacuum_analyze_scale_factor = 0.05, autovacuum_analyze_threshold = 2000);
ALTER TABLE
按照之前 AUTOVACUUM 计算 SQL ,可知要修改 11001 行才会触发 AUTO ANALYZE, 要有约 21001 个 dead tuples 才会触发 AUTO VACUUM。
schemaname | public
relname | pgbench_accounts
autovacuum_vacuum_scale_factor | 0.2
autovacuum_vacuum_threshold | 1000
autovacuum_analyze_scale_factor | 0.1
autovacuum_analyze_threshold | 1000
n_live_tup | 100000
reltuples | 100000
autovacuum_analyze_trigger | 11001
n_mod_since_analyze | 0
rows_to_mod_before_auto_analyze | 11001
last_autoanalyze |
autovacuum_vacuum_trigger | 21001
n_dead_tup | 0
rows_to_delete_before_auto_vacuum | 21001
last_autovacuum |
现在设置了表级的参数以后,从如下 表级 AUTOVACUUM 计算 SQL ,可知修改 7001 行就可以触发 AUTO ANALYZE, 有约 12001 个 dead tuples 就可以触发 AUTO VACUUM。更重要的是,表级的 AUTOVACUUM 参数不会对其他表产生影响,只对已设置的表有效,也可以对不同大小的表设置不同的参数,还可以随时调整!
表级 AUTOVACUUM 计算 SQL
alvindb=> WITH v AS (
SELECT (SELECT split_part(x, "=", 2) FROM unnest(c.reloptions) q (x) WHERE x ~ "^autovacuum_vacuum_scale_factor=" ) as autovacuum_vacuum_
scale_factor,
(SELECT split_part(x, "=", 2) FROM unnest(c.reloptions) q (x) WHERE x ~ "^autovacuum_vacuum_threshold=" ) as autovacuum_vacuum_thresh
old,
(SELECT split_part(x, "=", 2) FROM unnest(c.reloptions) q (x) WHERE x ~ "^autovacuum_analyze_scale_factor=" ) as autovacuum_analyze_s
cale_factor,
(SELECT split_part(x, "=", 2) FROM unnest(c.reloptions) q (x) WHERE x ~ "^autovacuum_analyze_threshold=" ) as autovacuum_analyze_thre
shold
FROM pg_class c
LEFT JOIN pg_namespace n ON n.oid = c.relnamespace
WHERE n.nspname IN ("public")
AND c.relname = "pgbench_accounts"
),
t AS (
SELECT
c.reltuples,u.*
FROM
pg_stat_user_tables u, pg_class c, pg_namespace n
WHERE n.oid = c.relnamespace
AND c.relname = u.relname
AND n.nspname = u.schemaname
AND u.schemaname = "public"
AND u.relname = "pgbench_accounts"
)
SELECT
schemaname,
relname,
autovacuum_vacuum_scale_factor,
autovacuum_vacuum_threshold,
autovacuum_analyze_scale_factor,
autovacuum_analyze_threshold,
n_live_tup,
reltuples,
autovacuum_analyze_trigger,
n_mod_since_analyze,
autovacuum_analyze_trigger - n_mod_since_analyze AS rows_to_mod_before_analyze,
last_autoanalyze,
autovacuum_vacuum_trigger,
n_dead_tup,
autovacuum_vacuum_trigger - n_dead_tup AS rows_to_delete_before_vacuum,
last_autovacuum
FROM (
SELECT
schemaname,
relname,
autovacuum_vacuum_scale_factor,
autovacuum_vacuum_threshold,
autovacuum_analyze_scale_factor,
autovacuum_analyze_threshold,
floor(autovacuum_analyze_scale_factor::numeric * reltuples) + 1 + autovacuum_analyze_threshold::int AS autovacuum_analyze_trigger,
floor(autovacuum_vacuum_scale_factor::numeric * reltuples) + 1 + autovacuum_vacuum_threshold::int AS autovacuum_vacuum_trigger,
reltuples,
n_live_tup,
n_dead_tup,
n_mod_since_analyze,
last_autoanalyze,
last_autovacuum
FROM
v,
t) a;
-[ RECORD 1 ]-------------------+-----------------
schemaname | public
relname | pgbench_accounts
autovacuum_vacuum_scale_factor | 0.1
autovacuum_vacuum_threshold | 2000
autovacuum_analyze_scale_factor | 0.05
autovacuum_analyze_threshold | 2000
n_live_tup | 100000
reltuples | 100000
autovacuum_analyze_trigger | 7001
n_mod_since_analyze | 0
rows_to_mod_before_analyze | 7001
last_autoanalyze |
autovacuum_vacuum_trigger | 12001
n_dead_tup | 0
rows_to_delete_before_vacuum | 12001
last_autovacuum |
现在已预测到要修改的行数,接下来一步一步来触发一下表级的 AUTO ANALYZE 和 AUTO VACUUM。
先删除 7000 行数据:
alvindb=> SELECT clock_timestamp();
clock_timestamp
-------------------------------
2021-11-06 23:33:03.252622+08
(1 row)
alvindb=> DELETE FROM pgbench_accounts WHERE aid<=7000;
DELETE 7000
alvindb=> SELECT pg_sleep(6);
pg_sleep
----------
(1 row)
alvindb=> SELECT clock_timestamp();
clock_timestamp
-------------------------------
2021-11-06 23:33:09.363536+08
(1 row)
根据表级 AUTOVACUUM 计算 SQL 执行结果的 rows_to_mod_before_analyze
得知,再修改 1 行将触发 AUTO ANALYZE:
schemaname | public
relname | pgbench_accounts
autovacuum_vacuum_scale_factor | 0.1
autovacuum_vacuum_threshold | 2000
autovacuum_analyze_scale_factor | 0.05
autovacuum_analyze_threshold | 2000
n_live_tup | 93000
reltuples | 100000
autovacuum_analyze_trigger | 7001
n_mod_since_analyze | 7000
rows_to_mod_before_analyze | 1
last_autoanalyze |
autovacuum_vacuum_trigger | 12001
n_dead_tup | 7000
rows_to_delete_before_vacuum | 5001
last_autovacuum |
再修改 1 行:
alvindb=> SELECT clock_timestamp();
clock_timestamp
-------------------------------
2021-11-06 23:33:30.649717+08
(1 row)
alvindb=> UPDATE pgbench_accounts SET bid = bid WHERE aid=7001;
UPDATE 1
alvindb=> SELECT pg_sleep(6);
pg_sleep
----------
(1 row)
alvindb=> SELECT clock_timestamp();
clock_timestamp
-------------------------------
2021-11-06 23:33:36.705928+08
(1 row)
根据表级 AUTOVACUUM 计算 SQL 执行结果的 last_autoanalyze
得知,已精准触发 AUTO ANALYZE!
schemaname | public
relname | pgbench_accounts
autovacuum_vacuum_scale_factor | 0.1
autovacuum_vacuum_threshold | 2000
autovacuum_analyze_scale_factor | 0.05
autovacuum_analyze_threshold | 2000
n_live_tup | 93000
reltuples | 93000
autovacuum_analyze_trigger | 6651
n_mod_since_analyze | 0
rows_to_mod_before_analyze | 6651
last_autoanalyze | 2021-11-06 23:33:40.87317+08
autovacuum_vacuum_trigger | 11301
n_dead_tup | 7001
rows_to_delete_before_vacuum | 4300
last_autovacuum |
从 PostgreSQL 日志中也可以看到 AUTO ANALYZE 被触发了:
[ 2021-11-06 23:33:40.873 CST 32646 6186a054.7f86 1 6/1393 13179750]LOG: automatic analyze of table "alvindb.public.pgbench_accounts" syst
em usage: CPU: user: 0.04 s, system: 0.03 s, elapsed: 0.11 s
并且,根据 rows_to_delete_before_vacuum
得知,再删除 4300 行就可以触发 AUTO VACUUM。
接下来先删除 4299 行,以测试临界值:
alvindb=> SELECT clock_timestamp();
clock_timestamp
-------------------------------
2021-11-06 23:33:43.867176+08
(1 row)
alvindb=> UPDATE pgbench_accounts SET bid = bid WHERE aid>=95702;
UPDATE 4299
alvindb=> SELECT pg_sleep(6);
pg_sleep
----------
(1 row)
alvindb=> SELECT clock_timestamp();
clock_timestamp
-------------------------------
2021-11-06 23:33:50.016447+08
(1 row)
autovacuum_naptime
为 5s,此时并未触发 AUTO VACUUM。
schemaname | public
relname | pgbench_accounts
autovacuum_vacuum_scale_factor | 0.1
autovacuum_vacuum_threshold | 2000
autovacuum_analyze_scale_factor | 0.05
autovacuum_analyze_threshold | 2000
n_live_tup | 93000
reltuples | 93000
autovacuum_analyze_trigger | 6651
n_mod_since_analyze | 4299
rows_to_mod_before_analyze | 2352
last_autoanalyze | 2021-11-06 23:33:40.87317+08
autovacuum_vacuum_trigger | 11301
n_dead_tup | 11300
rows_to_delete_before_vacuum | 1
last_autovacuum |
再删除 (UPDATE = DELETE + INSERT) 1 行 :
alvindb=> SELECT clock_timestamp();
clock_timestamp
-------------------------------
2021-11-06 23:33:53.326483+08
(1 row)
alvindb=> UPDATE pgbench_accounts SET bid = bid WHERE aid=7002;
UPDATE 1
alvindb=> SELECT pg_sleep(6);
pg_sleep
----------
(1 row)
alvindb=> SELECT clock_timestamp();
clock_timestamp
-------------------------------
2021-11-06 23:33:59.439375+08
(1 row)
从如下结果中的 last_autovacuum
得知,此时已精确触发 AUTO VACUUM!
schemaname | public
relname | pgbench_accounts
autovacuum_vacuum_scale_factor | 0.1
autovacuum_vacuum_threshold | 2000
autovacuum_analyze_scale_factor | 0.05
autovacuum_analyze_threshold | 2000
n_live_tup | 93000
reltuples | 93000
autovacuum_analyze_trigger | 6651
n_mod_since_analyze | 4300
rows_to_mod_before_analyze | 2351
last_autoanalyze | 2021-11-06 23:33:40.87317+08
autovacuum_vacuum_trigger | 11301
n_dead_tup | 0
rows_to_delete_before_vacuum | 11301
last_autovacuum | 2021-11-06 23:34:00.956936+08
从 PostgreSQL 日志中也可以看到 AUTO VACUUM 被触发了:
[ 2021-11-06 23:34:00.956 CST 32710 6186a068.7fc6 1 6/1455 0]LOG: automatic vacuum of table "alvindb.public.pgbench_accounts": index scans
: 1
pages: 0 removed, 421 remain, 0 skipped due to pins, 0 skipped frozen
tuples: 2 removed, 93000 remain, 0 are dead but not yet removable, oldest xmin: 13179755
buffer usage: 967 hits, 60 misses, 7 dirtied
avg read rate: 10.067 MB/s, avg write rate: 1.174 MB/s
system usage: CPU: user: 0.01 s, system: 0.00 s, elapsed: 0.18 s
关注 DBA Daily 公众号,第一时间收到文章的更新。
通过一线 DBA 的日常工作,学习实用数据库技术干货!
PostgreSQL VACUUM 之深入浅出
华山论剑之 PostgreSQL sequence
[PG Upgrade Series] Extract Epoch Trap
[PG Upgrade Series] Toast Dump Error
gitLab supports only PostgreSQL now
Mysql or PostgreSQL?
PostgreSQL hstore Insight
ReIndex 失败原因调查
PG 数据导入 Hive 乱码问题调查
PostGIS 扩展创建失败原因调查
原文地址:https://www.cnblogs.com/dbadaily/archive/2022/02/25/vacuum2.html
--结束END--
本文标题: PostgreSQL VACUUM 之深入浅出 (二)
本文链接: https://lsjlt.com/news/9150.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-10-23
2024-10-22
2024-10-22
2024-10-22
2024-10-22
2024-10-22
2024-10-22
2024-10-22
2024-10-22
2024-10-22
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0