本篇内容介绍了“sql、pandas和spark常用数据查询操作对比”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学
本篇内容介绍了“sql、pandas和spark常用数据查询操作对比”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
谈到数据,必会提及数据库;而提及数据库,则一般指代关系型数据库(RMDB),操作关系型数据库的语言则是SQL(Structured Query Language)。SQL本质上仍然属于一种编程语言,并且有着相当悠久的历史,不过其语法特性却几乎没怎么变更过,从某种意义上讲这也体现了SQL语言的过人之处。
在最新TioBE排行榜中,SQL位居第10位
一般而言,一句标准的SQL语句按照书写顺序通常含有如下关键词:
select:指定查询字段
distinct:对查询结果字段进行去重
from:明确查询的数据库和表
join on:指定查询数据源自多表连接及条件
where:设置查询结果过滤条件
group by:设置分组聚合统计的字段
having:依据聚合统计后的字段进一步过滤
order by:设置返回结果排序依据
limit:限定返回结果条数
这是一条SQL查询语句中所能涉及的主要关键字,经过解析器和优化器之后,最后的执行过程则又与之差别很大,执行顺序如下:
from:首先找到待查询的表
join on:如果目标数据表不止一个,则对多表建立连接关系
where:根据查询条件过滤数据记录
group by:对过滤结果进行分组聚合
having:对分组聚合结果进行二次过滤
select:对二次过滤结果抽取目标字段
distinct:根据条件进行去重处理
order by:对去重结果进行排序
limit:仅返回排序后的指定条数记录
曾经,个人一度好奇为何不将SQL语句的书写顺序调整为与执行顺序一致,那样更易于理解其中的一些技术原理,但查询资料未果后,就放弃了……
当然,本文的目的不是介绍SQL查询的执行原理或者优化技巧,而仅仅是对标SQL查询的几个关键字,重点讲解在Pandas和Spark中的实现。
以下按照SQL执行顺序讲解SQL各关键字在Pandas和Spark中的实现,其中Pandas是python中的数据分析工具包,而Spark作为集Java、Scala、Python和R四种语言的通用分布式计算框架,本文默认以Scala语言进行讲述。
1)from。由于Python和Scala均为面向对象设计语言,所以Pandas和Spark中无需from,执行df.xxx操作的过程本身就蕴含着from的含义。
2)join on。join on在SQL多表查询中是很重要的一类操作,常用的连接方式有inner join、left join、right join、outer join以及cross join五种,在Pandas和Spark中也都有相应关键字。
Pandas:Pandas实现join操作有两个主要的api:merge和join。其中merge是Pandas的顶层接口(即可直接调用pd.merge方法),也是DataFrame的API,支持丰富的参数设置,主要介绍如下:
def merge( left, # 左表 right, # 右表 how: str = "inner", # 默认连接方式:inner on=None, # SQL中on连接一段,要求左表和右表中 公共字段 left_on=None, # 设置左表连接字段 right_on=None, # 设置右表连接字段 left_index: bool = False, # 利用左表索引作为连接字段 right_index: bool = False, # 利用右表索引作为连接字段 sort: bool = False, # join结果排序 suffixes=("_x", "_y"), # 非连接字段有重名时,可s何止后缀 copy: bool = True, indicator: bool = False, validate=None, ) -> "DataFrame":
上述参数中,可以设置on连接条件的方式主要有3种:即若连接字段为两表共有字段,则可直接用on设置;否则可分别通过left_on和right_on设置;当一个表的连接字段是索引时,可设置left_index为True。
与merge操作类似,join可看做是merge的一个简化版本,默认以索引作为连接字段,且仅可通过DataFrame来调用,不是Pandas的顶级接口(即不存在pd.join方法)。
另外,concat也可通过设置axis=1参数实现横向两表的横向拼接,但更常用于纵向的uNIOn操作。
Spark:相较于Pandas中有多种实现两个DataFrame连接的方式,Spark中接口则要单一许多,仅有join一个关键字,但也实现了多种重载方法,主要有如下3种用法:
// 1、两个DataFrame有公共字段,且连接条件只有1个,直接传入连接列名 df1.join(df2, "col") // 2、有多个字段,可通过Seq传入多个字段 df1.join(df2, Seq("col1", "col2") // 3、两个DataFrame中连接字段不同名,此时需传入判断连接条件 df1.join(df2, df1("col1")===df2("col2")) // 注意,上述连接条件中,等于用===,不等于用=!=
3)where。数据过滤在所有数据处理流程中都是重要的一环,在SQL中用关键字where实现,在Pandas和Spark中也有相应的接口。
Pandas。Pandas中实现数据过滤的方法有多种,个人常用的主要是如下3类:
通过loc定位操作符+逻辑判断条件实现筛选过滤。loc是用于数据读取的方法,由于其也支持传入逻辑判断条件,所以自然也可用于实现数据过滤,这也是日常使用中最为频繁一种;
通过query接口实现,提起query,首先可能想到的便是SQL中Q,实际上pandas中的query实现的正是对标SQL中的where语法,在实现链式筛选查询中非常好用,具体可参考Pandas用了一年,这3个函数是我的最爱……
where语句,Pandas以API丰富而著称,所以自然是不会放过where关键字的,不过遗憾的是Pandas中的where和Numpy中的where一样,都是用于对所有列的所有元素执行相同的逻辑判断,可定制性较差。
Spark。Spark中实现数据过滤的接口更为单一,有where和filter两个关键字,且二者的底层实现是一致的,所以实际上就只有一种用法。但在具体使用中,where也支持两种语法形式,一种是以字符串形式传入一个类SQL的条件表达式,类似于Pandas中query;另一种是显示的以各列对象执行逻辑判断,得到一组布尔结果,类似于Pandas中loc操作。
4)group by。group by关键字用于分组聚合,实际上包括了分组和聚合两个阶段,由于这一操作属于比较规范化的操作,所以Pandas和Spark中也都提供了同名关键字,不同的是group by之后所接的操作算子不尽相同。
Pandas:Pandas中groupby操作,后面可接多个关键字,常用的其实包括如下4类:
直接接聚合函数,如sum、mean等;
接agg函数,并传入多个聚合函数;
接transfORM,并传入聚合函数,但不聚合结果,即聚合前有N条记录,聚合后仍然有N条记录,类似SQL中窗口函数功能,具体参考Pandas中groupby的这些用法你都知道吗?
接apply,实现更为定制化的函数功能,参考Pandas中的这3个函数,没想到竟成了我数据处理的主力
Spark:Spark中的groupBy操作,常用的包括如下3类:
直接接聚合函数,如sum、avg等;
接agg函数,并传入多个聚合算子,与Pandas中类似;
接pivot函数,实现特定的数据透视表功能。
5)having。在SQL中,having用于实现对聚合统计后的结果进行过滤筛选,与where的核心区别在于过滤所用的条件是聚合前字段还是聚合后字段。而这在Pandas和Spark中并不存在这一区别,所以与where实现一致。
6)select。选择特定查询结果,详见Pandas vs Spark:获取指定列的N种方式。
7)distinct。distinct在SQL中用于对查询结果去重,在Pandas和Spark中,实现这一操作的函数均为drop_duplicates/dropDuplicates。
8)order by。order by用于根据指定字段排序,在Pandas和Spark中的实现分别如下:
Pandas:sort_index和sort_values,其中前者根据索引排序,后者根据传入的列名字段排序,可通过传入ascending参数控制是升序还是降序。
Spark:orderBy和sort,二者也是相同的底层实现,功能完全一致。也是通过传入的字段进行排序,可分别配合asc和desc两个函数实现升序和降序。
// 1、指定列+desc df.orderBy(df("col").desc) // 2、desc函数加指定列 df.orderBy(desc("col"))
9)limit。limit关键字用于限制返回结果条数,这是一个功能相对单一的操作,二者的实现分别如下:
Pandas:可分别通过head关键字和iloc访问符来提取指定条数的结果;
Spark:直接内置了limit算子,用法更接近SQL中的limit关键字。
10)Union。SQL中还有另一个常用查询关键字Union,在Pandas和Spark中也有相应实现:
Pandas:concat和append,其中concat是Pandas 中顶层方法,可用于两个DataFrame纵向拼接,要求列名对齐,而append则相当于一个精简的concat实现,与Python中列表的append方法类似,用于在一个DataFrame尾部追加另一个DataFrame;
Spark:Spark中直接模仿SQL语法,分别提供了union和unionAll两个算子实现两个DataFrame的纵向拼接,且含义与SQL中完全类似。
对标SQL标准查询语句中的常用关键字,重点对Pandas和Spark中相应操作进行了介绍,总体来看,两个计算框架均可实现SQL中的所有操作,但Pandas实现的接口更为丰富,传参更为灵活;而Spark则接口更为统一,但一般也支持多种形式的方法重载。另外,Spark中的算子命名与SQL更为贴近,语法习惯也与其极为相似,这对于具有扎实SQL基础的人快速学习Spark来说会更加容易。
“SQL、Pandas和Spark常用数据查询操作对比”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注编程网网站,小编将为大家输出更多高质量的实用文章!
--结束END--
本文标题: SQL、Pandas和Spark常用数据查询操作对比
本文链接: https://lsjlt.com/news/56250.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-10-23
2024-10-22
2024-10-22
2024-10-22
2024-10-22
2024-10-22
2024-10-22
2024-10-22
2024-10-22
2024-10-22
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0