查找算法及排序算法 常见的七种查找算法:1. 基本查找2. 二分查找3. 插值查找4. 斐波那契查找5. 分块查找6. 哈希查找7. 树表查找 四种排序算法:1. 冒泡排序1.1 算法步骤
也叫做顺序查找
基本思想:顺序查找也称为线形查找,属于无序查找算法。从数据结构线的一端开始,顺序扫描,依次将遍历到的结点与要查找的值相比较,若相等则表示查找成功;若遍历结束仍没有找到相同的,表示查找失败。
示例代码:
public class A01_BasicSearchDemo1 { public static void main(String[] args) { //基本查找/顺序查找 //核心: //从0索引开始挨个往后查找 //需求:定义一个方法利用基本查找,查询某个元素是否存在 //数据如下:{131, 127, 147, 81, 103, 23, 7, 79} int[] arr = {131, 127, 147, 81, 103, 23, 7, 79}; int number = 82; System.out.println(basicSearch(arr, number)); } //参数: //一:数组 //二:要查找的元素 //返回值: //元素是否存在 public static boolean basicSearch(int[] arr, int number){ //利用基本查找来查找number在数组中是否存在 for (int i = 0; i < arr.length; i++) { if(arr[i] == number){ return true; } } return false; }}
也叫做折半查找
说明:元素必须是有序的,从小到大,或者从大到小都是可以的。
如果是无序的,也可以先进行排序。但是排序之后,会改变原有数据的顺序,查找出来元素位置跟原来的元素可能是不一样的,所以排序之后再查找只能判断当前数据是否在容器当中,返回的索引无实际的意义。
基本思想:也称为是折半查找,属于有序查找算法。用给定值先与中间结点比较。比较完之后有三种情况:
相等
说明找到了
要查找的数据比中间节点小
说明要查找的数字在中间节点左边
要查找的数据比中间节点大
说明要查找的数字在中间节点右边
代码示例:
package com.itheima.search;public class A02_BinarySearchDemo1 { public static void main(String[] args) { //二分查找/折半查找 //核心: //每次排除一半的查找范围 //需求:定义一个方法利用二分查找,查询某个元素在数组中的索引 //数据如下:{7, 23, 79, 81, 103, 127, 131, 147} int[] arr = {7, 23, 79, 81, 103, 127, 131, 147}; System.out.println(binarySearch(arr, 150)); } public static int binarySearch(int[] arr, int number){ //1.定义两个变量记录要查找的范围 int min = 0; int max = arr.length - 1; //2.利用循环不断的去找要查找的数据 while(true){ if(min > max){ return -1; } //3.找到min和max的中间位置 int mid = (min + max) / 2; //4.拿着mid指向的元素跟要查找的元素进行比较 if(arr[mid] > number){ //4.1 number在mid的左边 //min不变,max = mid - 1; max = mid - 1; }else if(arr[mid] < number){ //4.2 number在mid的右边 //max不变,min = mid + 1; min = mid + 1; }else{ //4.3 number跟mid指向的元素一样 //找到了 return mid; } } }}
在介绍插值查找之前,先考虑一个问题:
为什么二分查找算法一定要是折半,而不是折四分之一或者折更多呢?
其实就是因为方便,简单,但是如果我能在二分查找的基础上,让中间的mid点,尽可能靠近想要查找的元素,那不就能提高查找的效率了吗?
二分查找中查找点计算如下:
mid=(low+high)/2, 即mid=low+1/2*(high-low);
我们可以将查找的点改进为如下:
mid=low+(key-a[low])/(a[high]-a[low])*(high-low)
这样,让mid值的变化更靠近关键字key,这样也就间接地减少了比较次数。
基本思想:基于二分查找算法,将查找点的选择改进为自适应选择,可以提高查找效率。当然,差值查找也属于有序查找。
细节:对于表长较大,而关键字分布又比较均匀的查找表来说,插值查找算法的平均性能比折半查找要好的多。反之,数组中如果分布非常不均匀,那么插值查找未必是很合适的选择。
代码跟二分查找类似,只要修改一下mid的计算方式即可。
在介绍斐波那契查找算法之前,我们先介绍一下很它紧密相连并且大家都熟知的一个概念——黄金分割。
黄金比例又称黄金分割,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1:0.618或1.618:1。
0.618被公认为最具有审美意义的比例数字,这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。因此被称为黄金分割。
在数学中有一个非常有名的数学规律:斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89…….
(从第三个数开始,后边每一个数都是前两个数的和)。
然后我们会发现,随着斐波那契数列的递增,前后两个数的比值会越来越接近0.618,利用这个特性,我们就可以将黄金比例运用到查找技术中。
基本思想:也是二分查找的一种提升算法,通过运用黄金比例的概念在数列中选择查找点进行查找,提高查找效率。同样地,斐波那契查找也属于一种有序查找算法。
斐波那契查找也是在二分查找的基础上进行了优化,优化中间点mid的计算方式即可
代码示例:
public class FeiBoSearchDemo { public static int maxSize = 20; public static void main(String[] args) { int[] arr = {1, 8, 10, 89, 1000, 1234}; System.out.println(search(arr, 1234)); } public static int[] getFeiBo() { int[] arr = new int[maxSize]; arr[0] = 1; arr[1] = 1; for (int i = 2; i < maxSize; i++) { arr[i] = arr[i - 1] + arr[i - 2]; } return arr; } public static int search(int[] arr, int key) { int low = 0; int high = arr.length - 1; //表示斐波那契数分割数的下标值 int index = 0; int mid = 0; //调用斐波那契数列 int[] f = getFeiBo(); //获取斐波那契分割数值的下标 while (high > (f[index] - 1)) { index++; } //因为f[k]值可能大于a的长度,因此需要使用Arrays工具类,构造一个新法数组,并指向temp[],不足的部分会使用0补齐 int[] temp = Arrays.copyOf(arr, f[index]); //实际需要使用arr数组的最后一个数来填充不足的部分 for (int i = high + 1; i < temp.length; i++) { temp[i] = arr[high]; } //使用while循环处理,找到key值 while (low <= high) { mid = low + f[index - 1] - 1; if (key < temp[mid]) {//向数组的前面部分进行查找 high = mid - 1; index--; } else if (key > temp[mid]) {//向数组的后面的部分进行查找 low = mid + 1; index -= 2; } else {//找到了 //需要确定返回的是哪个下标 if (mid <= high) { return mid; } else { return high; } } } return -1; }}
当数据表中的数据元素很多时,可以采用分块查找。
汲取了顺序查找和折半查找各自的优点,既有动态结构,又适于快速查找
分块查找适用于数据较多,但是数据不会发生变化的情况,如果需要一边添加一边查找,建议使用哈希查找
分块查找的过程:
代码示例:
package com.itheima.search;public class A03_BlockSearchDemo { public static void main(String[] args) { int[] arr = {16, 5, 9, 12,21, 18, 32, 23, 37, 26, 45, 34, 50, 48, 61, 52, 73, 66}; //创建三个块的对象 Block b1 = new Block(21,0,5); Block b2 = new Block(45,6,11); Block b3 = new Block(73,12,17); //定义数组用来管理三个块的对象(索引表) Block[] blockArr = {b1,b2,b3}; //定义一个变量用来记录要查找的元素 int number = 37; //调用方法,传递索引表,数组,要查找的元素 int index = getIndex(blockArr,arr,number); //打印一下 System.out.println(index); } //利用分块查找的原理,查询number的索引 private static int getIndex(Block[] blockArr, int[] arr, int number) { //1.确定number是在那一块当中 int indexBlock = findIndexBlock(blockArr, number); if(indexBlock == -1){ //表示number不在数组当中 return -1; } //2.获取这一块的起始索引和结束索引 --- 30 // Block b1 = new Block(21,0,5); ---- 0 // Block b2 = new Block(45,6,11); ---- 1 // Block b3 = new Block(73,12,17); ---- 2 int startIndex = blockArr[indexBlock].getStartIndex(); int endIndex = blockArr[indexBlock].getEndIndex(); //3.遍历 for (int i = startIndex; i <= endIndex; i++) { if(arr[i] == number){ return i; } } return -1; } //定义一个方法,用来确定number在哪一块当中 public static int findIndexBlock(Block[] blockArr,int number){ //100 //从0索引开始遍历blockArr,如果number小于max,那么就表示number是在这一块当中的 for (int i = 0; i < blockArr.length; i++) { if(number <= blockArr[i].getMax()){ return i; } } return -1; }}class Block{ private int max;//最大值 private int startIndex;//起始索引 private int endIndex;//结束索引 public Block() { } public Block(int max, int startIndex, int endIndex) { this.max = max; this.startIndex = startIndex; this.endIndex = endIndex; } public int getMax() { return max; } public void setMax(int max) { this.max = max; } public int getStartIndex() { return startIndex; } public void setStartIndex(int startIndex) { this.startIndex = startIndex; } public int getEndIndex() { return endIndex; } public void setEndIndex(int endIndex) { this.endIndex = endIndex; } public String toString() { return "Block{max = " + max + ", startIndex = " + startIndex + ", endIndex = " + endIndex + "}"; }}
哈希查找是分块查找的进阶版,适用于数据一边添加一边查找的情况。
一般是数组 + 链表的结合体或者是数组+链表 + 红黑树的结合体
在课程中,为了让大家方便理解,所以规定:
但是实际上,我们一般不会采取这种方式,因为这种方式容易导致一块区域添加的元素过多,导致效率偏低。
更多的是先计算出当前数据的哈希值,用哈希值跟数组的长度进行计算,计算出应存入的位置,再挂在数组的后面形成链表,如果挂的元素太多而且数组长度过长,我们也会把链表转化为红黑树,进一步提高效率。
本知识点涉及到数据结构:树。
基本思想:二叉查找树是先对待查找的数据进行生成树,确保树的左分支的值小于右分支的值,然后在就行和每个节点的父节点比较大小,查找最适合的范围。 这个算法的查找效率很高,但是如果使用这种查找方法要首先创建树。
二叉查找树(BinarySearch Tree,也叫二叉搜索树,或称二叉排序树Binary Sort Tree),具有下列性质的二叉树:
1)若任意节点左子树上所有的数据,均小于本身;
2)若任意节点右子树上所有的数据,均大于本身;
二叉查找树性质:对二叉查找树进行中序遍历,即可得到有序的数列。
基于二叉查找树进行优化,进而可以得到其他的树表查找算法,如平衡树、红黑树等高效算法。
不管是二叉查找树,还是平衡二叉树,还是红黑树,查找的性能都比较高
冒泡排序(Bubble Sort)也是一种简单直观的排序算法。
它重复的遍历过要排序的数列,一次比较相邻的两个元素,如果他们的顺序错误就把他们交换过来。
这个算法的名字由来是因为越大的元素会经由交换慢慢"浮"到最后面。
当然,大家可以按照从大到小的方式进行排列。
public class A01_BubbleDemo { public static void main(String[] args) { //1.定义数组 int[] arr = {2, 4, 5, 3, 1}; //2.利用冒泡排序将数组中的数据变成 1 2 3 4 5 //外循环:表示我要执行多少轮。 如果有n个数据,那么执行n - 1 轮 for (int i = 0; i < arr.length - 1; i++) { //内循环:每一轮中我如何比较数据并找到当前的最大值 //-1:为了防止索引越界 //-i:提高效率,每一轮执行的次数应该比上一轮少一次。 for (int j = 0; j < arr.length - 1 - i; j++) { //i 依次表示数组中的每一个索引:0 1 2 3 4 if(arr[j] > arr[j + 1]){ int temp = arr[j]; arr[j] = arr[j + 1]; arr[j + 1] = temp; } } } printArr(arr); } private static void printArr(int[] arr) { //3.遍历数组 for (int i = 0; i < arr.length; i++) { System.out.print(arr[i] + " "); } System.out.println(); }}
public class A02_SelectionDemo { public static void main(String[] args) { //1.定义数组 int[] arr = {2, 4, 5, 3, 1}; //2.利用选择排序让数组变成 1 2 3 4 5 //最终代码: //外循环:几轮 //i:表示这一轮中,我拿着哪个索引上的数据跟后面的数据进行比较并交换 for (int i = 0; i < arr.length -1; i++) { //内循环:每一轮我要干什么事情? //拿着i跟i后面的数据进行比较交换 for (int j = i + 1; j < arr.length; j++) { if(arr[i] > arr[j]){ int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } } } printArr(arr); } private static void printArr(int[] arr) { //3.遍历数组 for (int i = 0; i < arr.length; i++) { System.out.print(arr[i] + " "); } System.out.println(); }}
插入排序的代码实现虽然没有冒泡排序和选择排序那么简单粗暴,但它的原理应该是最容易理解的了,因为只要打过扑克牌的人都应该能够秒懂。插入排序是一种最简单直观的排序算法,它的工作原理是通过创建有序序列和无序序列,然后再遍历无序序列得到里面每一个数字,把每一个数字插入到有序序列中正确的位置。
插入排序在插入的时候,有优化算法,在遍历有序序列找正确位置时,可以采取二分查找
将0索引的元素到N索引的元素看做是有序的,把N+1索引的元素到最后一个当成是无序的。
遍历无序的数据,将遍历到的元素插入有序序列中适当的位置,如遇到相同数据,插在后面。
N的范围:0~最大索引
package com.itheima.mysort;public class A03_InsertDemo { public static void main(String[] args) { int[] arr = {3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48}; //1.找到无序的哪一组数组是从哪个索引开始的。 2 int startIndex = -1; for (int i = 0; i < arr.length; i++) { if(arr[i] > arr[i + 1]){ startIndex = i + 1; break; } } //2.遍历从startIndex开始到最后一个元素,依次得到无序的哪一组数据中的每一个元素 for (int i = startIndex; i < arr.length; i++) { //问题:如何把遍历到的数据,插入到前面有序的这一组当中 //记录当前要插入数据的索引 int j = i; while(j > 0 && arr[j] < arr[j - 1]){ //交换位置 int temp = arr[j]; arr[j] = arr[j - 1]; arr[j - 1] = temp; j--; } } printArr(arr); } private static void printArr(int[] arr) { //3.遍历数组 for (int i = 0; i < arr.length; i++) { System.out.print(arr[i] + " "); } System.out.println(); }}
快速排序是由东尼·霍尔所发展的一种排序算法。
快速排序又是一种分而治之思想在排序算法上的典型应用。
快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快,而且效率高!
它是处理大数据最快的排序算法之一了。
package com.itheima.mysort;import java.util.Arrays;public class A05_QuickSortDemo { public static void main(String[] args) { System.out.println(Integer.MAX_VALUE); System.out.println(Integer.MIN_VALUE); int[] arr = {1,1, 6, 2, 7, 9, 3, 4, 5, 1,10, 8}; //int[] arr = new int[1000000]; long start = System.currentTimeMillis(); quickSort(arr, 0, arr.length - 1); long end = System.currentTimeMillis(); System.out.println(end - start);//149 System.out.println(Arrays.toString(arr)); //课堂练习: //我们可以利用相同的办法去测试一下,选择排序,冒泡排序以及插入排序运行的效率 //得到一个结论:快速排序真的非常快。 } public static void quickSort(int[] arr, int i, int j) { //定义两个变量记录要查找的范围 int start = i; int end = j; if(start > end){ //递归的出口 return; } //记录基准数 int baseNumber = arr[i]; //利用循环找到要交换的数字 while(start != end){ //利用end,从后往前开始找,找比基准数小的数字 //int[] arr = {1, 6, 2, 7, 9, 3, 4, 5, 10, 8}; while(true){ if(end <= start || arr[end] < baseNumber){ break; } end--; } System.out.println(end); //利用start,从前往后找,找比基准数大的数字 while(true){ if(end <= start || arr[start] > baseNumber){ break; } start++; } //把end和start指向的元素进行交换 int temp = arr[start]; arr[start] = arr[end]; arr[end] = temp; } //当start和end指向了同一个元素的时候,那么上面的循环就会结束 //表示已经找到了基准数在数组中应存入的位置 //基准数归位 //就是拿着这个范围中的第一个数字,跟start指向的元素进行交换 int temp = arr[i]; arr[i] = arr[start]; arr[start] = temp; //确定6左边的范围,重复刚刚所做的事情 quickSort(arr,i,start - 1); //确定6右边的范围,重复刚刚所做的事情 quickSort(arr,start + 1,j); }}
后记
👉👉💕💕美好的一天,到此结束,下次继续努力!欲知后续,请看下回分解,写作不易,感谢大家的支持!! 🌹🌹🌹
来源地址:https://blog.csdn.net/m0_59230408/article/details/132575019
--结束END--
本文标题: 从零开始学习 Java:简单易懂的入门指南之查找算法及排序算法(二十)
本文链接: https://lsjlt.com/news/385068.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-04-01
2024-04-03
2024-04-03
2024-01-21
2024-01-21
2024-01-21
2024-01-21
2023-12-23
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0