返回顶部
首页 > 资讯 > 后端开发 > JAVA >SpringCloud笔记
  • 808
分享到

SpringCloud笔记

springspringcloudjava 2023-08-23 14:08:54 808人浏览 八月长安
摘要

2023年最新笔记,全文约 3 万字,蕴含 spring cloud 常用组件 Nacos、OpenFeign、Seata、Sentinel 等 〇、简介 什么是spring Cloud? ​ Spring Cloud是一系列框架

2023年最新笔记,全文约 3 万字,蕴含 spring cloud 常用组件 Nacos、OpenFeign、Seata、Sentinel 等

image-20220816105047954

〇、简介

  1. 什么是spring Cloud?

    ​ Spring Cloud是一系列框架的有序集合,是一种基于微服务分布式架构技术。它利用 Spring Boot开发便利性巧妙地简化了分布式系统基础设施的开发,如服务发现注册、配置中心、消息总线、负载均衡、断路器、数据监控等,都可以用 Spring Boot 的开发风格做到一键启动和部署,从而提供了良好的开箱即用体验。

  2. 主流的架构方式:

    • 单体架构:架构简单、部署成本低,耦合度高。
    • 分布式架构:架构复杂、部署成本高,耦合度低。
  3. 微服务架构特征:

    总体方向:高内聚、低耦合

    • 单一职责:微服务拆分粒度小,每个服务对应单一业务功能。
    • 面向服务:对外暴露业务接口。
    • 自治:团队独立、技术独立、数据独立、部署独立。
    • 隔离性强:提升容错性、避免出现级联故障。
  4. 常见微服务技术对比:

    • 阿里 dubbo
    • Spring Cloud(第一代)
    • Spring Cloud Alibaba(第二代)

    image-20221216201220074

    image-20221216201836589

  5. Spring Cloud 版本说明

image-20230107124358739

大版本说明:

  • 2020 年之前:按照“伦敦地铁”命名,从 A 到 H。
  • 2020 年之后:按年份命名。

小版本说明:

image-20230107205014009

其余版本信息说明

  • snapshot: 快照
  • pre:预览版本
  • alpha : 内测
  • beta : 公测
  • release : 稳定版本
  • GA: General Availability,发行版,即最稳定的版本
  • Final : 正式版
  • Pro(professional) : 专业版
  • Plus: 加强版
  • Retail : 零售版
  • DEMO : 演示版
  • Build : 内部标号
  • Corporation或Enterpraise 企业版
  • M1 M2 M3 : M是milestone的简写 里程碑的意思
  • RC 版本RC:(Release Candidate),几乎就不会加入新的功能了,而主要着重于除错
  • SR : 修正版
  • Trial : 试用版
  • Shareware : 共享版
  • Full : 完全版
  1. Spring Cloud 与 Spring Boot 的选型必须严格按照官方给出的建议去对应,我们可以通过官网或者详情链接https://start.spring.io/actuator/info查看最新推荐的版本对应关系:

image-20230107123953717

  1. 【其他注意点】

    • 微服务之间的联系通过暴露接口实现,比如Http协议或者Dubbo协议。
    • 每个微服务都应该有专属的独立数据库,并且每个微服务只能访问自己的数据库,严禁访问别人的微服务数据库(避免重复开发原则)。
  2. 构建 Spring Cloud 工程

    创建 Maven 项目,选择一个较为简单的架构模式(方便后面删除)

image-20230107152827025

将父工程中除了.pom文件的其余文件全部删除

image-20230107153006593

在父工程的pom 文件中修改或新增pom,代表这是父工程,其他工程项目可继承于它。

<packaging>pompackaging>

粘贴下列pom配置:

  • 只声明依赖,不实现引入,子项目需要显示声明使用的依赖
  • 作用:子项目在声明时可以不用带上版本号,如果子版本中也配置了版本号,则以子版本标明的为主。
  • 注意 Spring Boot 与 Spring Cloud 之间的版本对应关系
<parent>    <groupId>org.springframework.bootgroupId>    <artifactId>spring-boot-starter-parentartifactId>    <version>2.3.9.RELEASEversion>    <relativePath/>parent><dependencies>    <dependency>        <groupId>org.projectlombokgroupId>        <artifactId>lombokartifactId>    dependency>dependencies><properties>    <project.build.sourceEncoding>UTF-8project.build.sourceEncoding>    <project.reporting.outputEncoding>UTF-8project.reporting.outputEncoding>    <java.version>1.8java.version>    <spring-cloud.version>Hoxton.SR8spring-cloud.version>    <Mysql.version>5.1.47mysql.version>    <mybatis.version>2.1.1mybatis.version>properties><dependencyManagement>    <dependencies>                <dependency>            <groupId>org.springframework.cloudgroupId>            <artifactId>spring-cloud-dependenciesartifactId>            <version>${spring-cloud.version}version>            <type>pomtype>            <scope>importscope>        dependency>                <dependency>            <groupId>com.alibaba.cloudgroupId>            <artifactId>spring-cloud-alibaba-dependenciesartifactId>            <version>2.2.5.RELEASEversion>            <type>pomtype>            <scope>importscope>        dependency>                <dependency>            <groupId>mysqlgroupId>            <artifactId>mysql-connector-javaartifactId>            <version>${mysql.version}version>        dependency>                <dependency>            <groupId>org.mybatis.spring.bootgroupId>            <artifactId>mybatis-spring-boot-starterartifactId>            <version>${mybatis.version}version>        dependency>    dependencies>dependencyManagement>
  1. 构建 Spring Cloud 工程

    • 方式一:构建初始 Maven 项目(module),后面内容缓慢补充(改 pom、写 yml、编写主启动类、编写业务类)
    • 方式二:构建 Spring Initializr 项目(module),后面改写 pom 文件使形成 Maven 继承关系即可。个人偏向于这种方式
  2. 父类显式声明子类,子类标明继承自父类

<modules>  <module>子类1module>  <module>子类2module>modules>
<parent>    <artifactId>SpringCloud_testartifactId>    <groupId>org.examplegroupId>    <version>1.0-SNAPSHOTversion>parent>
  1. 【强制性】凡是微服务,一般都需要有端口号与名称(程序名称将作为服务Id ,用于与其他服务分辨)

    server:  port: 8001spring:  application:    name: payment8001
  2. 返回结果定义(通常结构)

    • 数值类型code码,表示状态
    • 消息类型message:例如 success,error 等
    • 消息实体 data,即数据
    @Data@AllArgsConstructor@NoArgsConstructorpublic class CommonResult<T> {    private Integer code;    private String message;    private T data; }
  3. RestTemplate类简介:

    RestTemplate 是 Spring 提供的用于访问 Restful 风格服务的客户端模版工具集,其提供了多种便捷访问远程 Http 服务的方法,作用类似 Java 原生的 HttpClient

  4. Spring Cloud 初体验:

    服务之间通过暴露接口、HTTP 请求实现沟通。

    自行配置Spring对象 RestTemplate 并注入,发送 GET 与 POST 请求使用 .getForObject().postForObject()

    @Configurationpublic class CommonConfig {    @Bean    RestTemplate getRsetTemplate(){        return new RestTemplate();    }}

image-20221216205247945


一、Eureka

NetFlix Eureka,注册中心

  1. 简介:

    • Spring Cloud 使用 Eureka 来充当第一代注册中心,其类似于【发布者】-【订阅者】模型。
  2. Eureka 拥有 3 个角色

    • Eureka Server:服务端。注册中心,提供记录服务信息(业务功能、健康状况等)、心跳监控等。
    • Eureka Client:客户端。用于简化与 Eureka Server 的交互
      • Provider:服务提供者,会将自己的信息注册到 Eureka Server 并每隔 30s 发送一次心跳包。
      • consumer:服务消费者,根据所需从 Eureka Server 中拉取服务列表,并根据负载均衡策略对其中一个微服务发起远程调用。

    img

  3. Eureka 实现原理

    • 微服务启动,会通过 Eureka Client 向 Eureka Server 进行注册自己的信息,而 Eureka Server 会存储该服务的信息。
    • 微服务启动,会周期性地向 Eureka Server 发送心跳(即自身信息,默认周期为30秒),如果Eureka Server在一定时间内没有接收到某个微服务节点的心跳,则会注销该微服务节点(默认90秒)。
    • 每个 Eureka Server 同时也是 Eureka Client ,多个Eureka Server之间通过复制的方式完成服务注册表的同步。
    • Eureka Client 会缓存 Eureka Server 中的信息。即使所有的 Eureka Server 节点宕机,服务消费者依然可以使用缓存中的信息找到服务提供者。

image-20230108115148345

  1. 简单实现(单机版)

    • pom 导包(分为 server 与 client 包,部分Spring版本 parent 中无 Eureka 信息,需手动指定版本)
    • 服务端主配置上开启@EnableEurekaServer
    • yaml 配置 Eureka 信息(注意也要配置 Spring 程序名称)

    【服务端】:服务端一般不需要将自己注册成微服务

    <dependency>    <groupId>org.springframework.cloudgroupId>    <artifactId>spring-cloud-starter-netflix-eureka-serverartifactId>dependency>
    @EnableEurekaServer
    server:  port: 10086spring:  application:    name: MyServereureka:  client:    service-url:      defaultZone: http://127.0.0.1:10086/eureka      # 不向 eureka server 注册自己与获取服务列表      reGISter-with-eureka: false      fetch-registry: false 

    【客户端】

    <dependency>    <groupId>org.springframework.cloudgroupId>    <artifactId>spring-cloud-starter-netflix-eureka-clientartifactId>dependency>
    spring:  application:    name: user_serviceeureka:  client:    service-url:      defaultZone: http://127.0.0.1:10086/eureka

    ​ 利用 RestTemplate 向其他微服务发送请求。在编写 URL 路径时,通过指定其他微服务的应用名即spring.application.name来调用其服务(如http://userservice/),注册中心将充当 DNS 为各微服务提供解析服务,从而使我们不用像之前一样编写 IP 或域名硬编码的形式(如http://127.0.0.1:8080/)。

    // 子微服务使用其他微服务,并实现负载均衡@Bean@LoadBalancedpublic RestTemplate rest() {    return new RestTemplate();}
    String  url="http://userservice/user/"+order.getUserId();

二、Ribbon

NetFlix Ribbon,负载均衡

  1. 简介:

    • Ribbon 实现了客户端负载均衡,主要结合 Eureka 用于服务注册及发现。
    • 传统的服务端负载均衡诸如 Nginx 需要单独部署额外的服务(成本增加),而 Ribbon 结合 Eureka 可以直接在客户端实现负载均衡。
    • Ribbon拥有多种负载均衡模式,与 nginx 类似。

    image-20221217144349017

  2. Ribbon 默认使用【轮询算法】

    下面是 Ribbon 中实现的各种算法简介,IRule是顶层接口,下面是具体的实现类。

    image-20221217210047536

    image-20221217210352093

  3. 简单实现:

    ​ 由于 Ribbon 与 Eureka 都是由 NetFlix 公司开发,且 Ribbon 常用于与 Eureka 组合实现负载均衡,所以当我们引入 spring-cloud-starter-eureka 依赖时也会默认引入 Ribbon 依赖,无需重复引入。

    <dependency>    <groupId>org.springframework.cloudgroupId>    <artifactId>spring-cloud-starter-netflix-eureka-serverartifactId>dependency>

image-20230108112304433

我们要做的只是通过简单配置更改 Ribbon 的【负载均衡】模式,有 2 种办法:

  • 全局生效:因为 Ribbon 的所有模式都基于IRule接口,所以可以通过改变其注入的 Bean 实现。

    @Beanpublic IRule randomRule(){  // 随机模式  return new RandomRule();}
  • 局部生效:仅对所调用的某微服务生效

    某微服务名称:ribbon:NFLoadBalancerRuLeClassName: com.netfLix.Loadbalancer.RandomRule

    微服务名称即:所要调用的微服务名称

    image-20230108112804859

另外,由于 Ribbon 默认采用**【懒汉模式】,即第一次请求链接时才会获取“可用的微服务列表”,这将造成一定的体验损耗,我们可以将其更改成【饿汉模式】**。

ribbon:eager-load:enable: true# 客户端在启动时,就会去请求这些名称的“微服务表”clients:- userservice- vipservice

三、Nacos

阿里 Nacos,Eureka的替代品

注册中心(服务发现中心)、配置管理。

0、简介

  1. Nacos /nɑ:kəʊs/Dynamic Naming and Configuration Service(动态域名命名和配置服务)首字母简称,一个更易于构建云原生应用的动态服务发现、配置管理和服务管理平台,Nacos 致力于发现、配置和管理微服务。

  2. Nacos 使用 Java 编写,如果本地 jdk 环境配置不对,会出现一系列不明所以的报错。

  3. Nacos是一个内部微服务组件,需要在可信的内部网络中运行,并非面向公网环境的产品,不可暴露在公网环境,强烈不建议部署在公共网络环境。Nacos提供了简单的鉴权实现,是为防止业务错用的弱鉴权体系,而不是防止恶意攻击的强鉴权体系。

image-20230109082514076

  1. Nacos 架构

    • Namespace:命名空间,默认空串代表公共命名空间public
    • Group:分组,默认为DEFAULT_GROUP,作项目区分,用来区分相同开发环境下的不同项目(如测试环境下的电商项目、测试环境下的培训机构项目)
    • Service:服务,提供具体服务(如登录服务、验证码服务等)。
    • Cluster:集群,如上海集群,杭州集群。

    例如在某命名空间下(如测试环境的命名空间),有众多分组(项目),每个项目又有一些服务(服务可以说是最小可用单位),服务又会归属于不同集群(提升可用性与性能)。

image-20230119124628349

  1. 整合 Spring Cloud 配置说明:

    • discovery :服务发现中心
    • config:配置中心

image-20230109090936651

  1. 当 Nacos 没有整合 OpenFeign 时,默认使用的是 RestTemplate ,此时如果需要实现“负载均衡”策略,则:

    @LoadBalanced@Beanpublic RestTemplate restTemplate() {    return new RestTemplate();}

    负载均衡方式默认为轮询

1、安装

  1. 简介:

    • Nacos 已经被封装成 jar 包,我们配置好基本要求,直接运行 jar 包即可。
    • 在程序运行之后,其余配置只能在网页端的控制面板修改,不能在代码中修改。
  2. 手动模式

    • GitHub下载

    • 解压并启动(此处为单机模式)

      • 单机模式

      • 集群模式

    # 单击模式启动./startup.sh -m standalone# 关闭./shutdown.sh
  3. Docker模式

    挂载配置目录与日志目录

    Docker run \--name myNacos \-e MODE=standalone \--env NACOS_AUTH_ENABLE=true \-p 8848:8848 \-d \nacos/nacos-server

    挂载已有的配置目录与日志目录:提前将 Nacos/conf/目录文件拷贝至/tmp/nacos/conf/

    docker run \--name myNacos \-e MODE=standalone \--env NACOS_AUTH_ENABLE=true \-v /tmp/nacos/conf/:/home/nacos/conf/ \-v /tmp/nacos/logs/:/home/nacos/logs/ \-p 8848:8848 \-d \nacos/nacos-server

    挂载新的的配置目录与日志目录:

    docker run \--name myNacos \-e MODE=standalone \--env NACOS_AUTH_ENABLE=true \-v nacosConf:/home/nacos/conf/ \-v nacosLogs:/home/nacos/logs/ \-p 8848:8848 \-d \nacos/nacos-server
    docker inspect MQ | grep volume
  4. 开启服务器鉴权

    按照官方文档配置启动,默认是不需要登录的,这样会导致配置中心对外直接暴露。而启用鉴权之后,需要在使用用户名和密码登录之后,才能正常使用nacos。(所以 Nacos 才推荐不要把自身放在“外网”中)

    配置/conf/application.properties文件

    nacos.core.auth.enabled=true

    如此一来,Client 端便需要配置 nacos 的账号密码才能登录。

    **注意:**鉴权开关是修改之后立马生效的,不需要重启服务端。

  5. 安装之后

    • 可以通过查看/logs/start.out日志来查看启动详情。
    • 访问http://127.0.0.1:8848/nacos登录 Nacos,默认账号密码均为 nacos。
  6. Spring项目引入 Nacos 依赖

    父工程(这是必备的)

    <dependency>    <groupId>com.alibaba.cloudgroupId>    <artifactId>spring-cloud-alibaba-dependenciesartifactId>    <version>2.2.5.RELEASEversion>    <type>pomtype>    <scope>importscope>dependency>

    子工程

    <dependency>    <groupId>com.alibaba.cloudgroupId>    <artifactId>spring-cloud-starter-alibaba-nacos-discoveryartifactId>dependency>
  7. 配置 Nacos 地址

    在未开启“鉴权模式”时,可以不配置usernamepassWord

    spring:  cloud:    nacos:      server-addr: localhost:8848      username: nacos      password: nacos
  8. **注意:**Nacos 包不可与 Eureka 包同时导入同一工程,否则产生冲突Bean multiple

2、命名空间

命名空间使实例之间【相互隔离】,看不到彼此,这可以用作正式环境与测试环境的区分。当 Nacos 启动时会默认使用全局唯一命名空间public

步骤:

  • 新建命名空间(此处自动使用 UUID 当作“主键id”)
  • 实例 yml 文件配置命名空间(使用生成的主键 id )

image-20221219135536134

image-20221219135705273

spring:cloud:    nacos:      server-addr: http://localhost:8848      discovery:        cluster-name: HZ        namespace: 53a68426-7e6c-4e09-83e3-57a87f116980# 声明命名空间

3、服务分级模型

image-20221219101928586

服务分级模型在相同“命名空间”的前提下,Nacos 利用服务分级存储模型来提高【容灾率】,例如:

  • 总体服务
    • 集群(如上海、杭州)
      • 实例

集群默认为DEFAULT_GROUP,更改如下:

spring:  cloud:    nacos:      server-addr: localhost:8848      discovery:        cluster-name: HZ  # 例如:HZ代表杭州、SH表示上海
  • 一个集群就相当于一个小型完善的“生态系统”。
  • 在开启集群设置后,我们应该将**【负载均衡策略】修改为【优先使用本地集群】(如果本地集群全部失效,程序会自动转向其他集群发起请求),随后 Nacos 就会再在本地集群选择【随机选取】**的方式进行实例的选择(注意这里不是轮询)。
某微服务名称:  ribbon:    NFLoadBalancerRuLeClassName: com.alibaba.cloud.ribbon.NacosRule

4、服务权重

​ Nacos可以通过【网页控制台】为实例设置权重,范围从0~1,值越大越容易被访问,设置为0则完全不会被访问,这可以用作“灰度升级”。

注意:必须是相同集群下拥有多个相同实例时,才可配置权重。

image-20221219134536119

5、服务监测

监测实例的健康状态

Nacos拥有临时监测(被动)、非临时监测(主动)

Eureka只有临时监测

image-20221219141352515

  1. 临时监测(默认、被动检测)

    • 发送心跳包。
    • 客户端心跳上报Nacos实例健康状态,默认间隔5秒,Nacos在15秒内未收到该实例的心跳,则会设置为不健康状态,超过30秒则将实例移除。在被移除后如果又开始上报心跳,则会重新注册实例。
    • 运维只能通过检查实例数量来监测实例状态,但临时实例的设置本就是应对“流量突增”情况的。
  2. 非临时监测(主动检测)

    • Nacos会定期 主动 发起请求询问实例的健康状态(不发送心跳包)
    • 在实例失效时也会主动 push 推送信息给服务消费者,及时更新数据。此时实例并不会被移除,依旧保留在服务列表,只是状态为false
    • 主动询问的方式对服务器压力较大,它的好处是运维可以实时看到实例的健康状态,便于后续的警告、扩容等一些列措施。
  3. 配置非临时检测:

    spriing:cloud:    nacos:      server-addr: http://localhost:8848      discovery:        cluster-name: HZ         namespace: 53a68426-7e6c-4e09-83e3-57a87f116980        # ephemeral,短暂的        ephemeral: fasle
  4. 【非临时监测】的另外一个作用:设置保护阈值,防止产生服务雪崩效应

    Nacos中可以针对具体的实例设置一个保护阈值,值为0-1之间的浮点类型。本质上,保护阈值是⼀个⽐例值(当前服务健康实例数/当前服务总实例数)。

    ⼀般情况下(临时监测),服务消费者要从Nacos获取可用实例有健康/不健康状态之分。Nacos在返回实例时,只会返回健康实例。

    但在高并发、大流量场景会存在⼀定的问题。比如,服务A有100个实例,98个实例都处于不健康状态,如果Nacos只返回这两个健康实例的话,流量洪峰的到来可能会直接打垮这两个服务,进一步产生雪崩效应。保护阈值存在的意义在于当服务A健康实例数/总实例数 < 保护阈值时,说明健康的实例不多了,保护阈值会被触发(状态true)。

    Nacos会把该服务所有的实例信息(健康的+不健康的)全部提供给消费者,消费者可能访问到不健康的实例,请求失败,但这样也⽐造成雪崩要好。牺牲了⼀些请求(将请求分流到不健康的实例),保证了整个系统的可⽤。

    image-20230109112913070

6、配置管理

实现“统一配置”与“热更新”

  1. 简介:

    使用 Nacos 可以实现实例的统一配置与配置热更新(即当配置被修改时,主动推送并实现热更新、不重启)

    应该将固定不变配置写入服务本身的application.yml,易于变化的配置则写入 Nacos 配置文件。

  2. 应用 Nacos 统一配置流程图

    image-20221220075719645

    声明:一个服务如果以 nacos 作为配置中心,应该先拉取 nacos 中管理的配置,然后与本地的配置文件比如 application.yml 中的配置合并,最后作为项目的完整配置,启动项目。

    实现原理:Spring 中bootstrap.yml文件的启动优先级高于application.yml,我们可以将 Nacos 配置写入其中(注意单词有两个t)。

  3. 【共同配置】

    在Nacos情境下,微服务在启动时会从 Nacos 读取2个配置文件,按优先级为:

    • 配置名称-环境.yamluserservice-dev.yaml
    • 配置环境.yamluserservice.yaml

    而且无论如何都会读取到第二个配置环境,所以我们可以将微服务相同的配置再放入第二种配置环境中。

  4. 【统一配置】

    • Nacos 中新建配置文件,命名规则:服务名称-环境.yaml,在其中编写易于变化的配置。
    • 微服务程序中引入nacos-config依赖。
    • 编写bootstrap.yml文件,这些配置决定了微程序会去读取哪一个Nacos配置文件。
      • Nacos地址
      • 服务名称
      • 当前环境
      • 文件后缀名

image-20221220082917379

<dependency>    <groupId>com.alibaba.cloudgroupId>    <artifactId>spring-cloud-starter-alibaba-nacos-configartifactId>dependency>
spring:  application:    name: userservice  profiles:    active: dev # 环境  cloud:    nacos:      server-addr: localhost:8848 # nacos地址      config:        file-extension: yaml # 文件后缀名      username: nacos      password: nacos      discovery:        ephemeral: false
  1. **【热更新】**实现:

    在【统一配置】的基础上,代码中有两种方式可以实现热更新:

    • 方式一:@RefreshScope + @Value (${属性key})注解
    • 方式二:@ConfigurationProperties

    两种方式不存在优劣,只是在形式作用上有些许差别,如果只想绑定少量属性方式一、否则方式二。

    @RestController@RequestMapping("users")// 热更新@RefreshScopepublic class TestController {    @Value("${pattern.datafORMat}")    String dataformat;    @GetMapping("/a")    String get(){        return dataformat;    }}
    @Data@Component@ConfigurationProperties(prefix = "pattern")public class CommonConfig {    String dataformat;}// 后面使用 @Autowired 注入使用

7、数据持久化

在这一步,小坑特别多

将官方内嵌的小型数据库Derby替换为MySQL

  1. Nacos 默认将数据存储在内嵌数据库 Derby 中,该数据库不属于生产可用的数据库,官方推荐的最佳实践是使用带有主从的高可用数据库集群,例如MySQL(而且目前只支持 MySQL )。

  2. 简单实现(单机版,下节集群部署):

    • 创建新的数据库,命名为:nacos(其实命名什么也无所谓,后面要用到)
    • 打开 Nacos 目录,在数据库 nacos 中运行数据库文件/conf/mysql-schema.sql建表。
    • 配置application.properties:打开配置文件,将注释解除、然后添加数据库信息。
    • 重启 Nacos:注意,在这一步时,我尝试数次都未能成功将 Nacos 重启,控制台各种报错信息,例如:namespaceControllerV2,然而真正的报错信息却隐藏在控制台末尾的一小行文字,最终发现是之前后台的 Nacos 进程未完全关闭(残留),完全关闭之后再次尝试重启,成功。

image-20230109211412460

image-20230109211718258

image-20230109204314404

ps -ef |grep nacos
# 单机重启./startup.sh -m standalone
  1. 其余注意点:

    1. 记得加数据库编号(从 0 开始),因为 Nacos 可集群部署。
    2. 配置信息不添加双引号!勿随意添加,都则报错“找不到数据源”No DataSource set

image-20230109205614475

image-20230109205704910

8、集群配置

利用上节的数据持久化知识( MySQL 数据库),将3 台 Nacos 绑定同步相同的数据源,便可以做到同时更新。

  1. 架构图:部署 3 台 Nacos Server。

image-20221220151857570

  1. 实现步骤:

    • 新建数据库nacos,导入/conf/mysql-schema.sql
    • 修改本地/conf/application.properties配置文件,添加数据库 MySQL 配置。
    • 将本地文件cluster.conf.example重命名为 cluster.conf,添加集群机器信息。
    • 将本地/conf/目录上传至服务器,复制 3 份/tmp/nacos/conf1/tmp/nacos/conf2/tmp/nacos/conf3
    • 修改 3 份配置文件端口,分别为:8845、8846、8847。
    • 启动,可以成功看到 3 个 Nacos 之间的数据互相同步。
    # 清理时用docker rm -f $(docker ps -a)

image-20230109204314404

175.178.20.191:8845175.178.20.191:8846175.178.20.191:8847
cp -r /conf/ /tmp/nacos/conf1 /tmp/nacos/conf2 /tmp/nacos/conf3
docker run -d \--env NACOS_AUTH_ENABLE=true \-v /tmp/nacos/conf1/:/home/nacos/conf/ \-v /tmp/nacos/logs1/:/home/nacos/logs/ \-p 8845:8848 \--name nacos1 \nacos/nacos-server
docker run -d \--env NACOS_AUTH_ENABLE=true \-v /tmp/nacos/conf2/:/home/nacos/conf/ \-v /tmp/nacos/logs2/:/home/nacos/logs/ \-p 8846:8848 \--name nacos2 \nacos/nacos-server
docker run -d \--env NACOS_AUTH_ENABLE=true \-v /tmp/nacos/conf3/:/home/nacos/conf/ \-v /tmp/nacos/logs3/:/home/nacos/logs/ \-p 8847:8848 \--name nacos3 \nacos/nacos-server

结果:腾讯云 2G2核 同时开启 3 个 Nacos,2 个成功,第 3 个失败(CPU飙满),总体算部署成功。

image-20230110172619499

9、权限控制

右菜单栏,步骤:

  1. 用户管理:创建用户user
  2. 角色管理:创建角色role,并绑定用户
  3. 权限管理:赋于角色权限auth,包含对指定“命名空间”的可读写操作。

image-20230109210417397

10、共享/扩展配置

共享配置 shared-configs

扩展配置 extension-config

  1. 简介:

    ​ 日常开发中,多个模块可能会有很多共用的配置,比如数据库连接信息、Redis/RabbitMQ 连接信息、监控配置等等。那么此时我们就希望可以加载多个配置,或者多个项目共享同一个配置。

    • 扩展配置:微服务所依赖的其他微服务所需要的配置文件(“依赖链条”)
    • 共享配置:很多微服务共享的配置文件,例如日志打印、swagger配置等。

    两者除了优先级不同之外没有其他任何区别,都⽀持三个属性,:

    • data-id
    • group:默认 DEFAULT_GROUP。
    • refresh: 在配置变更时,应用内是否支持动态刷新。
  2. 简单范例:

image-20230120080758585

spring:  application:    name: nacos-config-multi  main:    allow-bean-definition-overriding: true  cloud:    nacos:      username: ${nacos.username}      password: ${nacos.password}      config:        server-addr: ${nacos.server-addr}        namespace: ${nacos.namespace}        # 共享配置shared-configs:          - data-id: swagger-${spring.profiles.active}.yaml            group: xuecheng-plus-common            refresh: true          - data-id: logging-${spring.profiles.active}.yaml            group: xuecheng-plus-common            refresh: true        # 扩展配置,优先级大于shared-configs (在之后加载)        extension-configs:  - data-id: content-service-${spring.profiles.active}.yaml    group: eat-plus-project    refresh: true  - data-id: dataId    group: eat-plus-project    refresh: true

11、配置文件优先级

  1. 基本思想:影响的范围越小,优先级越高。

    • 远端 > 本地

    • 带有profiles > 不带

    • 配置中心(远端) > 命令行参数 > 本地application.yaml > 本地bootstrap.yaml

  2. 存在 3 种配置文件大类,优先级从上至下:

    • 远端

      • 服务名-环境.yaml
      • 服务名.yaml
      • 扩展配置.yaml
      • 共享配置.yaml
    • 命令行参数

    • 本地

      • application.properties
      • application.yaml
      • bootstrap.yaml

    bootstrap.yaml优于application.yaml执行,application.yaml优于application.properties执行,但是后执行的会覆盖前执行的配置,所以在本地越先执行的优先级越低。


四、OpenFeign

声明式的 WEB HTTP 服务客户端,替代原生 RestTemplate

与 Nacos 组合使用时,Nacos提供“域名”的解析服务

  1. 简介:

    OpenFeign是一个声明式的Web服务客户端,使得编写Web服务客户端变得非常容易,只需要创建一个接口,然后在上面添加注解,便可以通过接口来调用服务端的服务。

    OpenFeign 遵循 RPC 协议,即 Remote Procedure Call Protocol,远程调用协议。

    历史上存在过 Feign (由 NetFlix 公司开发),SprinGCloud组件中的一个轻量级RESTful的HTTP服务客户端,也是SpringCloud中的第一代负载均衡客户端。

    OpenFeign是SpringCloud自己研发的,在Feign的基础上支持了Spring mvc的注解,如@RequesMapping等,是SpringCloud中的第二代负载均衡客户端。

  2. 与 Ribbon 的关系:

    ​ OpenFeign默认将Ribbon作为负载均衡器,直接内置了 Ribbon。在导入OpenFeign 依赖后无需专门导入Ribbon 依赖。所以说,当我们需要更改 OpenFeign 的负载均衡策略时,其实就是需要修改 Ribbon 的策略,直接按照 Ribbon 的策略配置方式就行配置(即分为两种方式:全局与局部)。

  3. 步骤:

    • 引入依赖

    • 主类添加@EnableFeignClients注解,声明使用 Feign。

    • 使用注解@FeignClient()编写具体的 FeignClient 接口。

    • @Autowired注入对应 FeignClient 并使用。

    <dependency>    <groupId>org.springframework.cloudgroupId>    <artifactId>spring-cloud-starter-openfeignartifactId>dependency>
    @EnableFeignClients
    @FeignClient("userservice")public interface UserClient {// 此处是接口不是普通类    @GetMapping("/user/{id}")    User findById(@PathVariable Long id);// 注意需标注成“路径参数”}
    @AutowiredUserClient userClient;
  4. FeignClient接口定义说明(5大定义),以上面举例:

    • 服务名称:userservice
    • 请求方式:GET
    • 请求路径:/user/{id}
    • 请求参数:Long id
    • 返回值类型:User
  5. 其余配置

    # 开启 Gzip 压缩feign:  compression:  request:      enabled: true      min-request-size: 2048      mime-types: text/xml, application/xml, application/JSON    response:      enabled: true      useGzipDecoder: true
  6. 【自定义配置】

    一般我们可能只需要配置“日志级别”就好了。

    image-20221220184244900

    可以使用两种方式配置日志级别,一般使用None(默认,不打印)Basic,避免控制台打印过多信息。

    • yml配置文件(推荐)
    • Java代码(麻烦,省略)
    feign:  client:    config:      default:# 全局生效        logger-level: full
    feign:  client:    config:      userservice:# 局部(指定微服务)生效        logger-level: full
    # Basic 级别打印的日志[UserClient#findById] ---> GET http://userservice/user/2 HTTP/1.1[UserClient#findById] <--- HTTP/1.1 200 (537ms)
  7. 优化Feign

    Feign 底层的客户端实现有 3 种

    • URLConnection(默认):JDK自带、不支持连接池
    • Apache Httpclient:支持连接池
    • OKHttp:支持连接池

    使用连接池可以复用连接(避免在连接时多次产生3次握手4次挥手),更改为OKHttp使用步骤如下:

    • 引入 Feign-okhttp 依赖
    • yml配置开启
    <dependency>    <groupId>io.GitHub.openfeigngroupId>    <artifactId>feign-okhttpartifactId>dependency>
    feign:  okhttp:    enabled: true
  8. Feign最佳实践:

    • 解决多份配置文件的尴尬,当然也存在弊端
    • 将共用的代码抽取成jar包,使用依赖的方式进行导入。

    (之前)

image-20221220203720965

(现在)

image-20221220203655595


五、Geteway

Spring Gateway

image-20221222095402002

  1. 简介

    • Gateway与 Nginx 在操作的思想上是一样的,但是具体实现不同
    • Gateway:业务网关。针对每一个微服务的网关,更接近具体业务。
    • Nginx:流量网关。用户访问的总入口,也就是前端页面的容器
  2. 网关的作用:

    • 身份认证、权限校验
    • 服务路由、负载均衡
    • 请求限流
  3. Spring Cloud网关类型

    • Gateway(新):Spring5 中提供的 WebFlux,响应式编程,性能更好。
    • zuul(旧):基于 Servlet 实现,阻塞式编程。
  4. 实现:

    本质:创建单一Spring程序用于 Gateway 实现路由转发,单一 jar 包。

    • 引入依赖
    • yml配置
    <dependency>    <groupId>org.springframework.cloudgroupId>    <artifactId>spring-cloud-starter-gatewayartifactId>dependency><dependency>    <groupId>com.alibaba.cloudgroupId>    <artifactId>spring-cloud-starter-alibaba-nacos-discoveryartifactId>dependency>

    下面定义了 2 个路由规则

    server:  port: 10080spring:  application:    name: gateway  cloud:    nacos:      server-addr: http://localhost:8848      discovery:        cluster-name: HZ    gateway:      routes:        - id: user-service         # 路由标识,全局唯一          uri: lb://userservice    # 路由的地址,lb:load balanced 负载均衡          predicates:            - Path=/user/**        # 路由断言,如果路径以 /user/ 开头则符合          default-filters:          - AddRequestHeader=Content-type,text/html# 添加请求头        - id: order-service          uri: lb://orderservice          predicates:            - Path=/order/**          default-filters:          - AddRequestHeader=Content-type,text/html
  5. 网关路由的【配置项】包括:

    • 路由id:路由唯一标识
    • uri:路由目的地址,支持 httplb 两种类型。
    • predicates:路由断言,判断是否符合要求
    • filters:路由过滤器,清理请求或响应。
  6. 11种基本的 Predicate 类型(上面范例使用了 Path )

    image-20221222101501086

  7. 3种过滤器

    • 默认过滤 defaultFilter
    • 局部过滤
    • 全局过滤
  8. 过滤器的31种细分类

    种类过多,需要时查看官方文档即可(只要查看名字就能得知该过滤器的作用 )

image-20221222193024880

  1. 过滤器的优先级说明:

    这里稍有点乱

    • 首先按照所设置的 Order 顺序来。
    • 当 Order 值一样时,执行顺序:默认过滤 → 局部过滤 → 全局过滤,即:
      • 请求时,最后全局过滤生效
      • 响应时,最后默认过滤生效

    image-20221222220325856

  2. 简单案例

  • 默认过滤:yml配置、灵活度低,默认生效
# 默认过滤(也对全局生效,默认此) default-filters,对所有路由生效spring:cloud:gateway:      routes:        - id: user-service         # 路由标识,全局唯一          uri: lb://userservice    # 路由的地址,lb:load balanced          predicates:            - Path=/user/**        # 路由断言,如果路径以 /user/ 开头则符合      default-filters:          - AddRequestHeader=Content-type,text/html# 添加请求头
  • 局部过滤:yml配置、灵活度低,对指定路由生效
spring:cloud:gateway:      routes:        - id: user-service         # 路由标识,全局唯一          uri: lb://userservice    # 路由的地址,lb:load balanced          predicates:            - Path=/user/**        # 路由断言,如果路径以 /user/ 开头则符合          filters:          - AddRequestHeader=Content-type,text/html# 添加请求头
  • 全局过滤:代码配置、灵活度高。创建 Bean,继承 GlobalFilter 接口并重写 filter() 方法,此处注意:
    • @Order(-1)表示优先级,值越低优先级越高,允许负值。
    • exchange参数属于 Spring WebFlux 组件中的知识,它用来获取请求与响应两者,但是例如获取出来的请求request不是 servlet 的静态技术,而是属于 WebFlux 的动态技术,即ServerHttpRequest(注意是以 Server 开头而不是 Servlet )。
    • chain参数用来生成成功时的返回值Mono
    • 当校验失败时,使用exchange设置失败的响应码,如401 Forbidden 并返回给客户端。
    • Mono是什么暂时不用管

image-20221222220825137

  1. CORS跨域处理

    Spring Boot 也可以实现跨域处理,并不一定要依赖于 Spring Gateway

    禁止跨域是浏览器的策略,后端之间互相调用接口不存在跨域。

    允许浏览器跨域一般需要配置的 5 大选项,并在 yml 文件中配置,如下:

    • 允许的域名
    • 允许的端口
    • 允许的方式
    • 是否允许使用Cookie
    • 有效期是多少(浏览器在第一次跨域时会发送Options请求,得到确认后在指定的有效期内不会重发Options请求,节约资源)

    image-20221222223313866


六、Docker

这章暂时跳过,具体内容查看:Docker笔记

  1. 将程序以及依赖、运行环境打包成镜像。
  2. Spring Cloud + docker compose案例:链接

七、RabbitMQ

MQ:Message Queue 消息队列

我们在大多数情况下使用【同步通信】,因为对时效性的要求较强

1、简介

  1. 【同步通信】

    • 优点:时效性强、可以立即得到结果

    • 缺点:业务之间耦合度高、性能和吞吐能力低、存在额外的资源消耗与级联失败的情况。

  2. 【异步通信】

    • 优点:耦合度高、吞吐量能力强、故障隔离、流量削峰

    • 缺点:对消息中间件的可靠性、安全性、吞吐能力有严重的依赖,业务架构复杂,没有明显的流程线、难以追踪管理

  3. 4 种不同形式的 MQ 产品:

    image-20221224201520073

2、RabbitMQ

消息一旦消费完就会被删除,RabbitMQ 没有消息回溯功能

image-20221225081003112

  1. docker 版本安装:

    docker pull rabbitmq
    docker run -it \-e RABBITMQ_DEFAULT_USER=user \-e RABBITMQ_DEFAULT_PASS=123 \ -v mq-plugins:/plugins \--name=mq \-hostname=mq \-p 15672:15672 \-p 5672:5672 \rabbitmq

    下面代码全部在容器内操作:

    rabbitmq-plugins enable rabbitmq_management
    cd /etc/rabbitmq/conf.d/echo management_agent.disable_metrics_collector = false > management_agent.disable_metrics_collector.conf# 退出并重启容器exitdocker restart mq
    • 15672: web 界面访问端口,需要进入容器内手动开启
    • 5672:具体的通信端口
    • 账号为user,密码为123
    • plugins:RabbitMQ插件目录,提供后续插件安装接口

image-20221225081926067

  1. 常见的5种消息模型

    • BasicQueue:基本消息队列
    • WorkQueue:工作消息队列
    • 发布订阅模式:
      • Publish/Subscribe:广播(Fanout)
      • Routing:路由(Direct,常用
      • Topics:主题(Topic)

    Producer -> Queue -> Consuming: send and receive messages from a named queue.

    Producer -> Queue -> Consuming: Work Queue used to distribute time-consuming tasks among multiple workers.

    Producer -> Queue -> Consuming: deliver a message to multiple consumers. This pattern is known as publish/subscribe

    Producer -> Queue -> Consuming: subscribe to a subset of the messages only.

    Producer -> Queue -> Consuming: receiving messages based on a pattern (topics).

  2. 【注意】:

    • BasicQueue 与 WorkQueue 中不存在 Exchange交换机,只存在 Queue队列。
    • 而在“发布订阅模型”中,存在 Exchange交换机 + Queue队列。
    • 交换机可以将消息转发给多个队列,队列中的消息只能被消费一次,用完即删除
    • 交换机只负责消息路由,不负责存储消息,如果路由失败则丢失信息。

image-20221225143946788

  1. RabbitMQ实现流程:

    • 配置连接参数
    • 建立连接
    • 创建通道
    • 创建队列(赋予名称,指定要操作的队列)
    • 发送消息(接收消息)
    • 关闭通道和连接

3、SpringAMQP

Spring 简化原生代码

  1. 简介:

    • AMQP:Advanced Message Queuing Protocol,高级消息队列协议,是一种用于在应用程序之间传递业务信息的开放标准。
    • Spring AMQP:基于 AMQP 实现的一套标准api规范,提供模板实现消息的发送和接收。例如Spring-amqp是接口,具体的实现有spring-rabbit(即RabbitMQ)等。
  2. BasicQueue实现:

    • 引入依赖
    • yml 配置 MQ 地址、账号密码等信息
    • 代码发送与接收信息
    <dependency>    <groupId>org.springframework.bootgroupId>    <artifactId>spring-boot-starter-amqpartifactId>dependency>
    spring:  rabbitmq:    host: 10.211.55.4    port: 5672    virtual-host: /   # 配置虚拟主机名(不同的虚拟主机之间存在分割,无法互相访问)    username: user    password: 123

    发送消息:使用RabbitTemplate模板类

    @AutowiredRabbitTemplate template;@Testpublic void sendMessage(){    String queueName="simple.queue";    Object message="你好MQ!";    template.convertAndSend(queueName,message);}

    接收消息:使用@RabbitListener注解

    @Componentpublic class SpringRabbitListener {    @RabbitListener(queues = "simple.queue")    public void listener(String msg){        System.out.println("【接收到消息】:"+msg);    }}
  3. WorkQueue实现:

    即多个接收队列,提高队列接收的速度。

    注意这里存在:“贪心的消费者”(消息预取),即消费者会优先获取消息,(不管当下能不能立即执行),此时需要设置消费预取上限,例如设为1,即一次一次的取。

    spring:  rabbitmq:    host: 10.211.55.4    port: 5672    virtual-host: /   # 配置虚拟主机名(不同的虚拟主机之间存在分割,无法互相访问)    username: user    password: 123    listener:      direct:        prefetch: 1# 消息预取数量限制为 1 ,默认为无限、即不作限制
  4. publish/subscribe实现:

    广播Fanout,交换机将消息转发至所有队列

    ​ 先将队列Exchange 交换机建立绑定关系,然后 publisher交换机发送消息,交换机自动将消息转发至各队列,subscribe向队列请求消息。队列与交换机之间的绑定有两种形式:代码实现、注解实现,这里使用 代码实现 ,后续使用 注解实现 形成对比。

    image-20221225143946788

    代码实现:建立交换机与队列之间的绑定关系

    // 声明(创建)交换机@Beanpublic FanoutExchange fanoutExchange(){    return new FanoutExchange("myExchange");}// 声明(创建)队列@Beanpublic Queue fanoutQueueOne(){    return new Queue("myQueue.one");}// 绑定交换机与队列@Beanpublic Binding binding(Queue fanoutQueueOne,FanoutExchange fanoutExchange){    return BindingBuilder.bind(fanoutQueueOne).to(fanoutExchange);}// 以相同的方式声明第二个队列...

    接收消息(代码几乎不变)

    @Componentpublic class SpringRabbitListener {    @RabbitListener(queues = "myQueue.one")    public void listener1(String msg){        System.out.println("【 1 接收到消息】:"+msg);    }    @RabbitListener(queues = "myQueue.two")    public void listener2(String msg){        System.out.println("【 2 接收到消息】:"+msg);    }}

    发送消息

    @AutowiredRabbitTemplate template;@Testpublic void sendMessage(){    String exchangeName="myExchange";    Object message="你好MQ!";    template.convertAndSend(exchangeName,"",message);// 中间参数为routingkey,下节使用}}

image-20221225202908300

image-20221225202240082

  1. Routing实现:

    ​ 交换机根据规则 routingkey 将消息路由至指定队列(对暗号),消息发送者在发送消息时指定 routingkey,队列在建立时绑定 routingkey(可以绑定多个key) ,符合则接收。

    image-20221225163613137

    注解实现:在接收消息时,顺便建立交换机与队列之间的绑定关系(注解里面套注解,第一次见)

@Component
public class SpringRabbitListener {
// 第一个
@RabbitListener(bindings = @QueueBinding(
value = @Queue(name = “direct.queueOne”),
exchange = @Exchange(name = “myEx”,type = ExchangeTypes.DIRECT),
key = {“red”,“blue”}
))
public void listener1(String msg){
System.out.println(“【 1 接收到消息】:”+msg);
}

 // 第二个   @RabbitListener(bindings = @QueueBinding(           value = @Queue(name = "direct.queueTow"),           exchange = @Exchange(name = "myEx",type = ExchangeTypes.DIRECT),           key = {"red","yellow"}   ))   public void listener2(String msg){       System.out.println("【 2 接收到消息】:"+msg);   }

}

发送消息```java@AutowiredRabbitTemplate template;@Testpublic void sendMessage(){    String exchangeName="myEx";    Object message="你好MQ!";  // 第二个参数 routingkey 指定发送的“规则”    template.convertAndSend(exchangeName,"yellow",message);}}

image-20221225203715550

  1. Topics实现:

    Topic 与 Direct 类似,区别在于 routingKey 必须是多个单词的列表,以.分割,并且支持通配符#*

    image-20221225170129997

    @Componentpublic class SpringRabbitListener {  // 注意要将交换机类型修改为Topic:type = ExchangeTypes.TOPIC    @RabbitListener(bindings = @QueueBinding(            value = @Queue(name = "topics.queueOne"),            exchange = @Exchange(name = "myExchangeTwo",type = ExchangeTypes.TOPIC),            key = {"China.#","#.news"}    ))    public void listener1(String msg){        System.out.println("【 1 接收到消息】:"+msg);    }      @RabbitListener(bindings = @QueueBinding(            value = @Queue(name = "topics.queueTow"),            exchange = @Exchange(name = "myExchangeTwo",type = ExchangeTypes.TOPIC),            key = {"America.#","#.news"}    ))    public void listener2(String msg){        System.out.println("【 2 接收到消息】:"+msg);    }}
    @AutowiredRabbitTemplate template;@Testpublic void sendMessage(){    String exchangeName="myExchangeTwo";    Object message="你好MQ!";    template.convertAndSend(exchangeName,"China.news",message);}

4、消息转换器

在这里我们将替换 Spring 默认提供的消息转换器,以提高性能。

为什么要替换呢?

​ 因为Spring默认的消息处理接口是org.springframework.amqp.support.converter.MessageConverter,默认实现为:SimpleMessageConverter,且基于 JDK 的 ObjectOutputStream 实现序列化,这种序列化方式在处理对象的时候会将对象编码并且经过Base64编码,不仅会占用更多的内存空间,而且会导致性能下降。

image-20221225212041719

解决方法即采用 jsON 格式,例如引入Jackson依赖并实现:

<dependency>    <groupId>com.fasterxml.jackson.dataformatgroupId>    <artifactId>jackson-dataformat-xmlartifactId>    <version>2.14.1version>dependency>
@Configurationpublic class CommonConfig {  // 更换消息转换器    @Bean    public MessageConverter jsonMessageConverter(){        return new Jackson2JsonMessageConverter();    }}

当然,以上配置在消息【发送者】与【接收者】之间都需要配置后续发送什么类型的消息,就使用什么类型接收(这点需十分注意,我在第一次编写时就忘记了修改消息的接收类型导致 Converter error)

image-20221225212024871


八、ES初级

elasticsearch,基于 Java 实现的分布式搜索:中文官网

1、简介

  • Elasticsearch是一款非常强大的开源索引擎,可以帮助我们从海量的数据中快速找到所需内容。

  • 具体功能:内容搜索、日志统计与分析、系统监控等。

  • Elasticsearch对内存的消耗特别大,少于512MB直接启动失败。

  • 注意以下安装的所有软件版本需与 Elasticsearch 保持一致

  • Elasticsearch结合 Kibana、Logstash、Beats,被称为「elastic stack」(也就是ELK),被广泛运用在日志数据分析、实时监控等领域。

image-20221225220545999

  • Elasticsearch基于 Lucene,Lucene既是一个 Java 语言的搜索引擎类库,也是Apache公司的顶级项目之一。

  • Elasticsearch中,文档数据会以JSON格式存储,即全部文本字段都需添加双引号

image-20221226074228670

2、传统数据库

以 MySQL 为例,与 Elasticsearch 作对比

两者优势互补,不能替代

  1. 传统的数据库 MYSQL 使用**【正向索引】,主要依靠主键**来实现对数据的获取。

image-20221225221959405

  1. Elasticsearch使用**【倒排索引】**(“优先耗费时间建立新表,后续以空间换时间实现搜索”)。

    • 文档(document):每条数据就是一个文档
    • 词条(term):文档按照语义分成的词语(分词)。
    • Elasticsearch中的词条是唯一的,后续搜索时会根据搜索关键词分词后的哈希运算值或者B+树实现查找。

image-20221225222839833

  1. 新老数据库概念对应关系

    • 索引:即“表”,相同类型的文档集合
    • 映射:即“约束”,索引中文档的字段约束信息,类似表的结构约束

    image-20221226075043294

image-20221226074653114

  1. Elasticsearch查询语句为DSL语句JSON格式),使用HTTP发送请求。

  2. 应用领域:

    • MySQL(写):擅长事务性操作,可以确保数据达到安全和一致性。
    • Elasticsearch(读):擅长海量数据的搜索、分析、计算。

    image-20221226075558008

3、安装

安装 Elasticsearch 与 Kibana(提供工具方便编写DSL语句)

两者安装包大小都在 1GB 左右,且运行时所占内存也较大,推荐使用docker安装。

  1. 建立docker网络:Elasticsearch与Kibana必须处在同一个网络之中,并且此时两者可以通过docker服务名来建立连接。

    docker network create es-net
  2. 安装Elasticsearch

    docker pull elasticsearch:7.17.7
    docker run -d \--name es \    -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \    -e "discovery.type=single-node" \    -v es-data:/usr/share/elasticsearch/data \    -v es-plugins:/usr/share/elasticsearch/plugins \    --privileged \    --network es-net \    -p 9200:9200 \    -p 9300:9300 \elasticsearch:7.17.7

    访问http://ip:9200能看到下列信息说明部署成功。

image-20221226160532334

当启动不成功时,查看日志排错

docker logs -f es
  1. 安装Kibana

    docker pull kibana:7.17.7
    docker run -d \--name kibana \-e ELASTICSEARCH_HOSTS=http://es:9200 \--network=es-net \-p 5601:5601  \kibana:7.17.7

    注意,Kibana启动较慢,可以使用docker logs -f 服务名查看其日志。

    访问http://ip:5601/当显示下列内容时表示成功。

image-20221226161559891

  1. 我们关注Kibana中的左边菜单栏ManagementDev Tools工具,后续用它来编写 DSL 操作。

image-20221226161859192

4、IK分词器

Elasticsearch默认的分词器对中文分词兼容性极差,只能“按字依次分词”

IK分词器,专为Elasticsearch中文分词打造

  1. 离线安装(推荐):

    • GitHub下载对应版本的 IK 分词器安装包,解压并重命名为ik
    • 查看之前安装的 Elasticsearch 数据卷挂载位置,将解压后的ik目录上传到该文件夹
    • 重启Elasticsearch,查看日志确定重启成功
    • Kibana Dev Tools测试分词效果
     docker volume inspect es-plugins
     docker restart es
    # 查看es日志docker logs -f es
    POST /_analyze{  "text": "这是一段中文句子,请分词",  "analyzer": "ik_smart"}

image-20221226163250368

  1. 在线安装(服务器 gitHub 访问速度较慢,不推荐):

    # 1、进入容器内部docker exec -it elasticsearch /bin/bash# 2、在线下载并安装./bin/elasticsearch-plugin  install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip# 3、退出exit# 4、重启容器docker restart elasticsearch
  2. IK分词器的 2 种模式

    • ik_smart:智能(最少)拆分

    • ik_max_word:重复(最细)切分

  3. 自定义字典(2种形式)

    • 扩展词库:增加分词库词语。
    • 停用词库:禁止对某些词语(敏感词)进行分词,直接忽略不显示。

    要自定义词库,只需要到ik/config/IKAnalyzer.cfg.xml中新增配置,并在配置文件的当前目录新建.dic字典,以为分割属于相关词语,然后重启Elasticsearch容器即可(可以使用 Kibana 的Dev Tools进行测试)。

    <properties><comment>IK Analyzer 扩展配置comment><entry key="ext_dict">myDict.dicentry> <entry key="ext_stopwords">myStopwords.dicentry>properties>

image-20221226180346011

docker restart es
POST /_analyze{  "text": "这是一段超长的词语,腾讯你好",  "analyzer": "ik_smart"}

image-20221226180857458

5、索引库创建

表,使用映射(约束)定义规则

  1. Mapping映射规则:

    • type:字段数据类型,常见的有:
      • 字符串:text(可分词的文本)、keyword(不可分词的文本,例如品牌、国家名等)
      • 数据:long、integer、short、byte、double、float
      • 布尔:boolean
      • 日期:date
      • 对象:object
      • 地理坐标(经纬度):geo_point
    • index:是否创建倒排索引,默认为true(其实许多字段并不需要创建索引)
    • analyzer:使用哪种分词器
    • properties:定义子字段
  2. 注意:索引库无数组概念,但允许某字段有多个值,例如下面的字段类型应为integer

    "score": [60,39,77,99]
  3. 创建规则 以及 案例

    PUT /索引库名称{  "mappings": {    "properties": {      "字段名1":{        "type": "text",        "analyzer": "ik_smart"      },      "字段名2":{        "type": "keyword",        "index": false      },      "字段名3":{        "properties": {          "子字段名1":{            "type":"keyword"          },          "子字段名2":{            "type":"keyword"}}}}}}
    PUT /mytable{  "mappings": {    "properties": {      "info":{        "type": "text",        "analyzer": "ik_smart"      },      "email":{        "type": "keyword",        "index": false      },      "name":{        "properties": {          "firstName":{            "type":"keyword"          },          "LastName":{            "type":"keyword"}}}}}}

image-20221226215909607

6、操作索引库

查询、删除、修改

  1. 首先声明:【索引库】和【Mapping】一旦创建就无法修改,但是可以(只能)添加新的字段,这是因为当索引库创建时 Elasticsearch 就会去创建倒排索引,如果允许修改索引库可能引起无法预知的错误,所以 Elasticsearch 在这点上比 MySQL 更加彻底,直接禁止修改。

  2. 查询:

    GET /索引库名
  3. 删除

    DELETE /索引库名
  4. 修改(新增)索引库

    PUT /索引库名/_mapping{  "properties":{    "新增的字段名":{      "type":"integer",      "index":false    }  }}

7、文档操作

数据:新增、查询、删除、修改

  1. 新增文档:

    文档id:类似 MySQL 主键,推荐手动添加(例如1),如果未添加则会自动生成较长的随机 id 代替

    POST /索引库名/_doc/文档id{  "字段名1":{    "firstName":"张",    "LastName":"三"  },  "字段名2":18,  "字段名3":"123@qq.com",  "字段名4":"程序猿"}

image-20221226223312237

  1. 查询

    • 单条文档查询:
    GET /索引库名/_doc/文档id
    • 全部查询
    GET /索引库名/_search
  2. 删除

    DELETE /索引库名/_doc/文档id
  3. 修改:修改文档这里有 2 种方式

    • 全量修改PUT + _doc,先完全删除旧文档、然后用新文档替代。
    • 增量修改POST + _update,在旧文档的基础上进行修改。
    PUT 索引库名/_doc/文档id{"字段1":"值1","字段2":"值2"}
    POST 索引库名/_update/文档id{"doc":{"字段":"新的值"}}

8、RestClient

Java 操作 Elasticsearch

  1. 简介:

    ​ ES官方提供了多种不同语言的客户端(包)用来操作ES。这些客户端的本质就是先组装DSL语句,然后通过 HTTP 请求发送给 ES。

  2. 建立索引库的【步骤】

    • 先建立相应 MySQL 数据库
    • 对照 MySQL 数据库,编写索引库的创建语句(自己考虑逻辑驼峰命名法
    • 在 Java 代码中使用 RestClient 借助 索引库编写语句创建索引库。
  3. 例如:

    以下案例为 MySQL 建表语句,经过分析发现,发现酒店名称需要分词并建立索引,酒店品牌不需要分词但需要索引,酒店经纬度不需要建立索引,酒店价格、评分等需要建立索引以方便排序

image-20221229091220550

{  "mappings": {    "properties": {      "id": {        "type": "keyword"      },      "name": {        "type": "text",        "analyzer": "ik_max_word",        "copy_to": "all"      },      "address": {        "type": "keyword",        "index": false      },      "price": {        "type": "integer"      },      "score": {        "type": "integer"      },      "brand": {        "type": "keyword",        "copy_to": "all"      },      "city": {        "type": "keyword"      },      "starName": {        "type": "keyword"      },      "business": {        "type": "keyword",        "copy_to": "all"      },      "pic": {        "type": "keyword",        "index": false      },      "location": {        "type": "geo_point"      },      "all": {        "type": "text",        "analyzer": "ik_max_word"      }    }  }}
  1. 多字段搜索

    字段拷贝:既想要实现多字段搜索,又想要效率最快

    字段拷贝可以使用 copy_to属性将当前字段拷贝到指定字段,示例:

    "all": {  "type": "text",  "analyzer": "ik_max_word"}"brand":{"type": "keyword","copy_to":"all"}"name":{"type": "keyword","copy_to":"all"}

    all成功包含brandname,以后搜索时只需要指定all即可。

    另外,虽然名叫“字段拷贝”,但是其实并不会真正的拷贝多份造成存储空间冗余。

  2. 初始化 Java RestClient

    • 引入 RestHighLevelClient 依赖
    • 覆盖官方默认的 ES 版本(因为Spring Boot 会默认替我们导入某一版本的 ES 包,但这与我们的服务器软件版本可能不兼容,所以需要替换)
    • 初始化 RestHighLevelClient

image-20221229081737871

<properties>    <java.version>1.8</java.version>    <elasticsearch.version>7.17.7</elasticsearch.version></properties>
RestHighLevelClient client=new RestHighLevelClient(RestClient.builder(        HttpHost.create("175.178.20.191:9200")));

或者将以上对象注册成Bean

@Configurationpublic class CommonConfig {    @Bean    RestHighLevelClient rest() {        return new RestHighLevelClient(RestClient.builder(                HttpHost.create("175.178.20.191:9200")        ));    }}

下面所有操作都是建立在初始化RestClient的基础上。

  1. 建立索引库

    CreateIndexRequest request = new CreateIndexRequest("hotel");request.source(MAPPING_TEMPLATE, XContentType.JSON);client.indices().create(request, RequestOptions.DEFAULT);
  2. 删除索引库

    DeleteIndexRequest request = new DeleteIndexRequest("hotel");client.indices().delete(request, RequestOptions.DEFAULT);
  3. 判断索引库是否存在

    GetIndexRequest request= new GetIndexRequest("hotel");Boolean         exists = client.indices().exists(request, RequestOptions.DEFAULT);System.out.println(exists);
  4. 导入文档数据

    • 单条导入:IndexRequest
    • 批量导入:利用 Mybatis Plus + BulkRequest
    // 注意在这可以赋予【id】IndexRequest request = new IndexRequest("hotel").id("1");// 利用 fastJSON 反序列化对象,生成 JSON 字符串Hotel        hotel   = new Hotel();hotel.setId(1L);hotel.setName("张三");hotel.setAddress("北京");request.source(JSON.toJSONString(hotel),XContentType.JSON);client.index(request,RequestOptions.DEFAULT);
    List<Hotel> list = hotelService.list();BulkRequest bulkRequest = new BulkRequest();for (Hotel hotel:list){    HotelDoc hotelDoc = new HotelDoc(hotel);    bulkRequest.add(new IndexRequest("hotel")            .id(hotelDoc.getId().toString())            .source(JSON.toJSONString(hotelDoc),XContentType.JSON));}client.bulk(bulkRequest,RequestOptions.DEFAULT);
  5. 获取文档数据

    根据 id

    GetRequest request = new GetRequest("hotel").id("1");GetResponse getResponse = client.get(request, RequestOptions.DEFAULT);String json = getResponse.getSourceAsString();System.out.println(json);

    此处为什么使用 getResponse.getSourceAsString() 如此形式获取 JSON 字符串?

    因为我们在调用get()方法时,底层实际上使用的是GET /hotel/_doc/1,这种请求会返回一串json字符串,但是此时我们想要的数据却保存在_source结构体中。

    GET /hotel/_doc/1

image-20221229085144790

  1. 更新文档数据

    • 全量更新:方式跟前面的导入文档数据一模一样,即再次写入 id 相同的文档,新文档会完全覆盖旧文档。
    • 局部更新:
    UpdateRequest request     = new UpdateRequest("hotel","1");request.doc(        "age","18",        "name","李四");client.update(request,RequestOptions.DEFAULT);
  2. 删除文档数据

    // 10086 为文档idDeleteRequest request = new DeleteRequest("hotel","10086");client.delete(request,RequestOptions.DEFAULT);
  3. 文档操作总结:

    • 初始化RestHighLevelClient
    • 创建__Request,即IndexRequestBulkRequestGetRequestUpdateRequestDeleteRequest
    • 准备参数(Index 和 Update 需要)
    • 发送请求。调用RestHighLevelClient.__()方法,即index()bulk()get()update()delete()
    • 解析结果(Get需要)

九、ES进阶

1、DSL查询

DSL 是基于 JSON 格式的查询方式

  1. 常见的查询方式

    • 查询所有:查询所有数据,一般用于测试。
      • match_all
    • 全文检索:对用户输入的关键字进行分词,然后计算哈希值并根据倒排索引进行搜索。
      • match:只能对单字段进行搜索
      • mutil_match:多字段搜索
    • 精确查询:根据精确词进行查询,一般查找的是 keyword 、数值、日期、Boolean 类型的数据。
      • ids:id s 根据 id 进行查询
      • range:范围
      • term:精确查找
    • 地理查询:根据经纬度进行查询
      • geo_distance
      • geo_bounding_box
    • 复合查询:组合查询查询方式
      • bool:“与或非”形式的组合
      • function_score:算分函数查询,可根据规则对文档相关性进行打分,控制文档的排名,常用于搜索引擎竞价。
  2. 【注意事项】

    • 查询时 ES 默认只会返回命中的 10 条或 20 条数据,并不会一下子都将命中数据返回(自动分页节省资源)。
    • 查询结果会按照“优先级”进行自动排序,相关度越高的结果排名越靠前。
  3. 查询的基本语法

    GET /索引名称/_search{  "query": {    "查询类型": {      "查询条件":"条件值"    }  }}
  4. 查询所有:match_all

    GET /hotel/_search{  "query": {    "match_all": {}  }}

image-20221229120332906

image-20221229120656256

  1. 全文检索

    以下两种方式查询结果一样。在前面时,我们定义 all 字段为拷贝字段,这里虽然两种方式的查询结果一样,但是推荐使用拷贝字段all,因为效率高;而在另一种查询方式中,联合查询的字段越多,性能越低。

    常用于“搜索框”搜索

    GET /hotel/_search{  "query": {    "match": {      "all": "外滩如家"    }  }}
    GET /hotel/_search{  "query": {    "multi_match": {      "query": "外滩如家",      "fields": ["brand","name","business"]    }  }}
  2. 精确查询

    关键字不会分词,查询出来的结果也要与关键字完全匹配

    • term:精确查询city=="上海"
    GET /hotel/_search{  "query": {    "term": {      "city": {        "value": "上海"      }    }  }}
    • range:查询范围
    GET /hotel/_search{  "query": {    "range": {      "price": {        "gte": 100,        "lte": 2000      }    }  }}
  3. 地理查询

    可用作“打车”、“附近的人”等功能

    • geo_bounding_box:画矩形。查询值落在矩形内的所有文档。
    • get_distance:画圆形。以点开始作半径查询,查询距离你多少米的人。常用于“附近的人”。

image-20221229133629944

GET /hotel/_search{  "query": {    "geo_bounding_box":{      "location":{        "top_left":{          "lat":31.1,          "lon":121.5        },        "bottom_right":{          "lat":30.9,          "lon":121.7        }      }    }  }}

image-20221229133657529

GET /hotel/_search{  "query": {    "geo_distance":{      "distance":"15km",      "location":"31.21,121.5"    }  }}
  1. 复合查询

    _socre字段表示得分

    • Function Score Query:算分函数查询,通过指定算法更改查询的相关度得分,常用于竞价排名。

    原始查询条件、过滤条件、算分函数、加权模式

    image-20221229150633204

    image-20221229150805327

    • Boolean Query:子查询组装,一个或多个查询子句的集合。具体的组合方式有
      • must:【与】,必须匹配每个子查询,参与算分。
      • should:【或】,只要匹配一个子查询就可以,参与算分。
      • must_not:【非】,不匹配任何一个子查询,并且不参与算分。
      • filter:必须匹配,单步不参与算分。(filter与must的区别只在于是否参与算分,不参与性能会更高)

image-20221229152346574

image-20221229152605518

2、搜索结果处理

排序、分页、高亮

一、排序
  1. 简介:

    • Elasticsearch支持对搜索结果进行排序,默认根据相关度算分_score进行排序,可以排序的字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。
    • 与MySQL中的order by思想一致。
    • 当使用排序功能时,_score就显得无意义,因此此时无得分,score始终为0
  2. 简单案例:sort声明

    GET /hotel/_search{  "query": {    "match_all": {}  },  // sort与query同级且为数组形式,意味着可以有多种排序定义  "sort": [    {      "price": {        "order": "desc"   // 排序字段和排序方式,AES与DESC      }    }  ]}

    简写版本

    "sort": [    {      "price": "desc"    }]
  3. 地理位置排序:距离案例,结果单位为km(有点智能)

    "sort": [  {    "_geo_distance": {      "location": {        "lat": "18.57",        "lon": "109.70"      },      "order": "asc",      "unit": "km"    }  }]

image-20221229161107837

二、分页
  1. 简介:使用fromsize标签。

  2. 案例

    GET /hotel/_search{  "query": {    "match_all": {}  },  "from": 100,  "size": 20}
  3. 注意事项:【深度分页】限制

    fromsize标签相加不能大于10000,否则报错。这是由于Elasticsearch使用倒排索引所产生的限制(倒排索引本身并不适合分页),一般也不会超过10000,但是如果有需求,官方也推荐了两种解决方式如下:

    • after search
      • 记住上次翻页的位置,下次分页从上次的地方开始。
      • 缺点:只能向后查询,不支持随机翻页。
    • scroll
      • 预先缓存分页信息
      • 已废弃,当数据改变时会重新缓存,不仅性能差劲,而且会导致数据的实时性缺失。
三、高亮
  1. 简介:在搜索结果中把搜索关键词突出显示。

image-20221229162026867

  1. 原理简介:

    • 将搜索结果中的关键字用“标签”标记,例如
    • 在页面中添加 CSS 样式
  2. 注意:

    • Elasticsearch内置默认高亮样式即为
    • 查询方式必须为match不能为match_all,因为后一种方式并无关键字!
  3. 简单实现

    GET /hotel/_search{  "query": {    "match": {      "all": "如家"    }  },  "highlight": {    "fields": {      "name": {      // ES默认搜索字段应该与搜索字段一致,如果不一致需要将:require_field_match=false      // 这里查询字段为:all,高亮字段为:name        "require_field_match": "false",         "pre_tags": "",        "post_tags": ""      }    }  }}

    搜索结果展现形式:新增highlight字段,高亮后的字段将放在里面,_source中的原内容并不会被改变,这点需十分注意!

image-20221229163204281

3、RestClient

此处 ES 将 API 封装的比较完善,(不同于前面)无需硬编码。

一、查询
  1. 基本查询步骤:

    • 创建SearchRuquest对象
    • 准备 Request.source().___query() ,塞入QueryBuilder构建查询条件。
    • 发送请求,得到结果
    • 解析结果(从外到内,逐层解析 JSON 格式数据)
  2. 注意:

    • 支持链式编程
    • 所有操作都基于Request.source()API接口,掌握了该接口就掌握了本节
  3. 简单实现:matchAllQuery()

    SearchRequest request = new SearchRequest("hotel");// .QueryBuilder中包含绝大多数查询方式request.source().query(        QueryBuilders.matchAllQuery());// 发送请求,得到响应数据,获取响应数据(JSON)并解析SearchResponse response = client.search(request, RequestOptions.DEFAULT);SearchHits     hits     = response.getHits();System.out.println("查询到的文档数:"+hits.getTotalHits().value);// 遍历查询到的数据(有分页,默认10条)for (SearchHit hit:hits.getHits()){    String json = hit.getSourceAsString();    System.out.println(json);}
  4. 【结果解析】示例图

    image-20221229192936236

  5. 单字段查询

    QueryBuilders.matchQuery("all","如家")
  6. 多字段查询

    QueryBuilders.multiMatchQuery("如家","name","brand")
  7. 精确查询

    • 词条查询term
    QueryBuilders.termQuery("brand","如家")
    • 范围查询
    QueryBuilders.rangeQuery("price").gt(100).lte(1000)
  8. 复合查询

    较复杂

    // 建立复合查询“构建器”BoolQueryBuilder boolQuery = new BoolQueryBuilder();// request组装复合查询boolQuery.must(QueryBuilders.termQuery("brand","如家"));boolQuery.filter(QueryBuilders.rangeQuery("price").gt(100));request.source().query(boolQuery);// 同以往:发送请求SearchResponse response = client.search(request, RequestOptions.DEFAULT);
  9. QueryBuilders选项一览(还有更多没有展示出来)

image-20221229202318712

二、排序
  1. 普通排序

    request.source().sort("price",SortOrder.ASC);
  2. 距离排序

    image-20221230091505118

    image-20221230091453667

三、分页与高亮
  1. 分页

    request.source()        .query(QueryBuilders.matchAllQuery())        .from(56)        .size(20);
  2. 高亮

    request.source()        .query(QueryBuilders.matchQuery("all", "如家"))  // requireFieldMatch 表示是否与查询字段匹配        .highlighter(new HighlightBuilder().field("name").requireFieldMatch(false));
  3. 【高亮结果】解析

    image-20221229200948934

四、Function score

image-20221230101611763

五、旅游网站案例

直达链接

搜索、分页、条件过滤、附近、广告置顶

  1. 示意图

    image-20221230091904107

  2. 搜索框功能实现(核心代码)

image-20221230141413531

image-20221230153026692

  1. 终极案例

    除 附近功能 之外均实现。

    @Overridepublic PageResult pageResult(RequestParams params) throws IOException {    SearchRequest request = new SearchRequest("hotel");    BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();    // 获取搜索关键词    if (params.geTKEy() == null || "".equals(params.getKey())) {        boolQuery.must(QueryBuilders.matchAllQuery());    } else {        boolQuery.must(QueryBuilders.matchQuery("all", params.getKey()));    }    String brand = params.getBrand();    if (StringUtils.isNotBlank(brand)) {        boolQuery.filter(QueryBuilders.termQuery("brand", brand));    }    // 1.3.城市    String city = params.getCity();    if (StringUtils.isNotBlank(city)) {        boolQuery.filter(QueryBuilders.termQuery("city", city));    }    // 1.4.星级    String starName = params.getStarName();    if (StringUtils.isNotBlank(starName)) {        boolQuery.filter(QueryBuilders.termQuery("starName", starName));    }    // 1.5.价格范围    Integer minPrice = params.getMinPrice();    Integer maxPrice = params.getMaxPrice();    if (minPrice != null && maxPrice != null) {        maxPrice = maxPrice == 0 ? Integer.MAX_VALUE : maxPrice;        boolQuery.filter(QueryBuilders.rangeQuery("price").gte(minPrice).lte(maxPrice));    }    // 2.算分函数查询    FunctionScoreQueryBuilder functionScoreQuery = QueryBuilders.functionScoreQuery(            boolQuery, // 原始查询,boolQuery            new FunctionScoreQueryBuilder.FilterFunctionBuilder[]{ // function数组                    new FunctionScoreQueryBuilder.FilterFunctionBuilder(QueryBuilders.termQuery("isAD", true), // 过滤条件ScoreFunctionBuilders.weightFactorFunction(100) // 算分函数                    )            }    );    // 设置查询条件    request.source()            .query(functionScoreQuery)            .from((params.getPage() - 1) * params.getSize())            .size(params.getSize());    // 向 ES 发送请求并获得结果、解析    SearchResponse response = client.search(request, RequestOptions.DEFAULT);    SearchHits     hits      = response.getHits();    List<HotelDoc> hotelDocs = new ArrayList<>();    for (SearchHit hit : hits.getHits()) {        String json = hit.getSourceAsString();        hotelDocs.add(JSON.parseObject(json, HotelDoc.class));    }    return new PageResult(hits.getTotalHits().value, hotelDocs);}

十、ES高阶

数据聚合、自动补全、同步、集群

1、数据聚合

aggregations,聚合

一、DSL
  1. 简介:聚合可以实现对文档数据的统计、分析、运算,常见的 3 种类型为

    • 聚合(Bucket):用来对文档分组
      • Term Aggregation:精确匹配,按照文档字段值分组
      • Date Histogram:按照日期阶梯分组,例如一周分为一组
    • 度量聚合(Metric):用来计算值
      • Avg:平均值
      • Max:最大值
      • Min:最小值
      • Stats:同时求 max、min、avg、sum 等
    • 管道聚合(pipeline):类似linux中的管道,使用其他聚合的结果作为输入,再次进行聚合
  2. ==【注意】==参与聚合的字段类型必须为:

    • keyword
    • 数值
    • 日期
    • 布尔
  3. 聚合必备的【三要素】

    • 聚合名称
    • 聚合类型
    • 聚合字段
  4. 聚合可配置的属性

    • size:指定聚合结果的数量(即分页)
    • order:聚合结果的排序方式
    • field:指定聚合字段
  5. 桶聚合Bucket案例

    附加对统计结果 _count 进行排序

    GET /hotel/_search{  "size": 0,// 令文档查询数为0,避免干扰  "aggs": {// 定义聚合    "myAggs": {// 给聚合起个名字      "terms": {// 聚合的类型        "field": "brand",// 对“brand”字段进行聚合,这里选择精确查询 term 模式        "size": 20,// 聚合的结果也会进行分页,这里为20        "order": {// 对聚合结果根据 _count 进行排序          "_count": "desc"        }      }    }  }}

image-20221230133857829

  1. 度量聚合Metric案例

    GET /hotel/_search{  "size": 0,  "aggs": {    "myAggs": {      "terms": {        "field": "brand",        "size": 20,        "order": {          "_count": "desc"        }      },      // 【桶聚合】内套【度量聚合】,score字段为文档自带,这里对其求 stats 操作      "aggs": {        "myScoreAggs": {          "stats": {            "field": "score"          }        }      }    }  }}

image-20221230134204088

  1. 【重要】:

    ​ 默认情况下,Bucket聚合将会对索引库中的所有文档做聚合,当索引库很大时这无疑会很消耗性能,我们可以通过添加query条件限制要聚合的文档范围

    即先 query 后 bucket,先查询再聚合。

    GET /hotel/_search{  "query": {    "range": {      "price": {        "lte": 300// 只对 300 元以下的酒店作聚合      }    }  },     "size": 0,    "aggs": {    "myAggs": {      "terms": {        "field": "brand",        "size": 20,      }    }  }}
二、RestClient
  1. 标准实现流程:

    1. 准备 Request

    2. 准备 DSL

      • 设置 Size==0

      • 聚合语句

    3. 发出请求

    4. 解析结果

      • 根据聚合名称获取聚合结果
      • 获取 Buckets
      • 遍历
  2. 聚合代码映射:依次对照

    image-20221230164742899

  3. 结果解析:获取 Buckets 数据

    image-20221230165137718

2、自动补全

一、基础
  1. 安装拼音分词器pinyin(步骤与 IK 分词器一致)

    • GitHub下载并解压(注意对应版本)
    • 将解压后的文件重命名为py后上传至 ES 的 plugin 目录
    • 重启ES并测试

image-20221230192239981

docker restart es 
POST /_analyze{  "text": "这是一段超长的词语,腾讯你好",  "analyzer": "pinyin"}

image-20221230192451153

  1. pinyin分词器分词说明:

image-20221230200047635

  1. ES分词器组成说明(3部分)

    • character filters:在 tokenizer 之前对文本进行处理,例如字符替换、字符删除等。
    • tokenizer:将文本安装一定的规则切割成词条(term),例如 keyword 不分词、ik_smart分词
    • tokenizer filter:将 tokenizer 输出的词条进一步处理,例如大小写转换、同义词处理、拼音处理等

    image-20221230192938889

  2. 如何自定义分词器?

    在创建索引库时,于 settings 中声明(同时可指定 character filters、tokenizer、tokenizer filter)。

    **自定义分词器有什么用?**首先软件中可引入多种开源分词器,我想组合这些分词器(例如:分别在 3 各不同阶段使用不同分词器)以达到最佳效果。意即如果我自定义分词器,直接使用开源分词器也是可以的,只不过在这里我想自定义。

    PUT /test{  "settings": {    "analysis": {      "analyzer": {// 自定义分词器        "my_analyzer":{// 分词器名称          "tokenizer":"ik_max_word",// 2 使用 ik_max_word          "filter":"py"// 3 使用使用 py ( py 在下面定义)        }      },      "filter": {// 自定义 tokenizer filter 过滤器        "py": { // 过滤器名称,下面为属性,具体参考 pinyin 官网文档          "type": "pinyin",          "keep_full_pinyin": false,          "keep_joined_full_pinyin": true,          "keep_original": true,          "limit_first_letter_length": 16,          "remove_duplicated_term": true,          "none_chinese_pinyin_tokenize": false        }      }    }  },  // 字段定义,即“建表语句”  "mappings": {    "properties": {      "name":{      "type": "text",      "analyzer": "my_analyzer",// 插入数据时,使用【自定义分词器】,即 pinyin +ik      "search_analyzer": "ik_smart"// 搜索时不应该使用 pinyin ,只需单独使用 ik      }    }  }}

    插入数据并测试

    POST /test/_doc/1{  "id": 1,  "name": "狮子"}POST /test/_doc/2{  "id": 2,  "name": "虱子"}// 查询 1GET /test/_search{  "query": {    "match": {      "name": "狮子"    }  }}// 查询 2GET /test/_search{  "query": {    "match": {      "name": "shizi"    }  }}
  3. 使用【拼音分词器】时应该注意的问题:

    为避免搜索到多音字情况,我们应该采取 2 套策略:

    • 存入数据时使用:pinyin分词器 + ik分词器
    • 搜索时:只用 ik 分词器
二、RestClient
  1. 建立酒店索引库(新增自动补全字段 suggestion )

    DELETE /hotel// 酒店数据索引库PUT /hotel{  "settings": {    "analysis": {      "analyzer": {      // 全文检索        "text_anlyzer": {          "tokenizer": "ik_max_word",          "filter": "py"        },        // 自动补全        "completion_analyzer": {          "tokenizer": "keyword",          "filter": "py"        }      },      "filter": {        "py": {          "type": "pinyin",          "keep_full_pinyin": false,          "keep_joined_full_pinyin": true,          "keep_original": true,          "limit_first_letter_length": 16,          "remove_duplicated_term": true,          "none_chinese_pinyin_tokenize": false        }      }    }  },  "mappings": {    "properties": {      "id":{        "type": "keyword"      },      "name":{        "type": "text",        "analyzer": "text_anlyzer",        "search_analyzer": "ik_smart",        "copy_to": "all"      },      "address":{        "type": "keyword",        "index": false      },      "price":{        "type": "integer"      },      "score":{        "type": "integer"      },      "brand":{        "type": "keyword",        "copy_to": "all"      },      "city":{        "type": "keyword"      },      "starName":{        "type": "keyword"      },      "business":{        "type": "keyword",        "copy_to": "all"      },      "location":{        "type": "geo_point"      },      "pic":{        "type": "keyword",        "index": false      },      "all":{        "type": "text",        "analyzer": "text_anlyzer",        "search_analyzer": "ik_smart"      },      "suggestion":{          "type": "completion",          "analyzer": "completion_analyzer"      }    }  }}
  2. 更改HotelDoc.java:新增suggestion字段,类型为 List

    @Data@NoArgsConstructor@AllArgsConstructorpublic class HotelDoc {    private Long id;    private String name;    private String address;    private Integer price;    private Integer score;    private String brand;    private String city;    private String starName;    private String business;    private String location;    private String pic;    private Boolean isAD;    private List<String> suggestion;    public HotelDoc(Hotel hotel) {        this.id = hotel.getId();        this.name = hotel.getName();        this.address = hotel.getAddress();        this.price = hotel.getPrice();        this.score = hotel.getScore();        this.brand = hotel.getBrand();        this.city = hotel.getCity();        this.starName = hotel.getStarName();        this.business = hotel.getBusiness();        this.location = hotel.getLatitude() + ", " + hotel.getLongitude();        this.pic = hotel.getPic();        this.suggestion = Arrays.asList(this.brand, this.business);    }}
  3. 导入数据

    @Testvoid  importData() throws IOException {    List<Hotel> list        = hotelService.list();    BulkRequest bulkRequest = new BulkRequest();    for (Hotel hotel:list){        HotelDoc hotelDoc = new HotelDoc(hotel);        bulkRequest.add(new IndexRequest("hotel")                .id(hotelDoc.getId().toString())                .source(JSON.toJSONString(hotelDoc),XContentType.JSON));    }    client.bulk(bulkRequest,RequestOptions.DEFAULT);}
  4. DSL测试自动补全功能

    GET /hotel/_search{  "suggest": {    "suggestions": {    // 关键词      "text": "sd",      "completion": {        "field": "suggestion",        // 跳过重复字符        "skip_duplicates":true,        "size":10      }    }  }}
  5. 准备请求,解析结果

    image-20230101084018801

    image-20221231084817254

    SearchRequest request = new SearchRequest("hotel");request.source().suggest(new SuggestBuilder().addSuggestion(        "mySuggestion",        SuggestBuilders                .completionSuggestion("suggestion")  // 字段名                .prefix("sd")                .skipDuplicates(true)                .size(10)));// 发送请求,获得结果并解析SearchResponse       response   = client.search(request, RequestOptions.DEFAULT);CompletionSuggestion suggestion = response.getSuggest().getSuggestion("mySuggestion");for ( CompletionSuggestion.Entry.Option option:suggestion.getOptions()){    String text = option.getText().string();    System.out.println(text);}
三、前后端结合案例

image-20230101095243775

image-20230101095313640

@GetMapping("suggestion")List<String> suggestion(@RequestParam("key") String  prefix) throws IOException {    SearchRequest request = new SearchRequest("hotel");    request.source().suggest(new SuggestBuilder().addSuggestion(            "mySuggestion",            SuggestBuilders                    .completionSuggestion("suggestion")  // 字段名                    .prefix(prefix)                    .skipDuplicates(true)                    .size(10)    ));    SearchResponse       response   = client.search(request, RequestOptions.DEFAULT);    CompletionSuggestion suggestion = response.getSuggest().getSuggestion("mySuggestion");    List<String > suggestions=new ArrayList<>();    for ( CompletionSuggestion.Entry.Option option:suggestion.getOptions()){        String text = option.getText().string();        suggestions.add(text);    }    System.out.println(suggestions.size());    return suggestions;}

3、数据同步

ES 的数据来源于 MySQL ,当 MySQL 数据发生改变时,ES也要跟着变化

一、简介
  1. 情境:ES 和 MySQL 分别来自不同的微服务。

  2. 3 种不同方案的同步方式:

    1. 同步调用:
      • 优点:实现简单
      • 缺点:业务耦合度高
    2. 异步通知(主选)
      • 优点:低耦合、实践难度一般
      • 缺点:依赖 MQ 的可靠性,时间复杂度较另外两者高
    3. 监听binlog
      • 优点:完全解除服务间耦合
      • 缺点:增加 MySQL 数据库负担,实现复杂度高

    image-20221231091243165

    image-20221231091319264

    image-20221231091336849

二、RestClient

实现的简单步骤流程,具体步骤请点击

准备 2 个项目

  • 一:包含MySQL,只负责数据的增删改
  • 二:包含 ES,只负责数据的

image-20230101095512787

4、ES集群部署

暂时跳过,待到后面有机会应用时自然会访问此章节

  1. 单机的 ES 面临 2 个问题:

    • 海量数据存储问题
    • 单点故障问题
  2. 解决方式:

    • 将索引库进行逻辑分片,存储至多个节点
    • 将分片的数据复制多份,分发到不同节点

image-20221231094709210


微服务保护 + 面试三板斧:分布式事务、分布式缓存、分布式消息

十一、微服务保护 Sentinel

阿里 Sentinel,相比 Nginx 更加细粒度

流量控制、隔离降级、授权规则、规则持久化

一、基础与安装
  1. 简介:

    • Sentinel 是阿里开源的微服务流量控制组件,是面向分布式、多语言异构化服务架构的流量治理组件,主要以流量为切入点,从流量路由、流量控制、流量整形、熔断降级、系统自适应过载保护、热点流量防护等多个维度来帮助开发者保障微服务的稳定性。
    • 常用来防止“雪崩问题”
    • 程序端口8719,控制台端口自定义,注意两个端口是不一样的东西。

image-20230101112144829

  1. 什么是雪崩问题?如何解决?

    在微服务之间相互调用时,因为个别微服务发生故障而引起整条链路都发生故障的情况。

    • 故障后纠错:超时处理、线程隔离、降级熔断(失败达到一定比例次数时暂停访问)。

    • 故障前预防:流量控制,使用 Sentinel 哨兵模式限制业务访问的QPS,避免服务因流量突增而故障。

image-20221231155346183

  1. 常见的服务保护技术对比

    image-20230101110507016

  2. 基本概念

    • 资源

      资源是 Sentinel 的关键概念。它可以是 Java 应用程序中的任何内容,例如,由应用程序提供的服务,或由应用程序调用的其它应用提供的服务,甚至可以是一段代码。在接下来的文档中,我们都会用资源来描述代码块。

      只要通过 Sentinel API 定义的代码,就是资源,能够被 Sentinel 保护起来。大部分情况下,可以使用方法签名,URL,甚至服务名称作为资源名来标示资源。

    • 规则

      围绕资源的实时状态设定的规则,可以包括流量控制规则、熔断降级规则以及系统保护规则。所有规则可以动态实时调整。

  3. 流控降级与容错标准

    Rule = target + strategy +fallbackAction

image-20230111155254300

  1. 安装步骤

    • GitHub下载( jar包,Spring Boot 程序)
    • 命令行启动

    指定控制台端口为 8090(程序端口依旧为 8719),账号 Sentinel,密码123456.

    java -Dserver.port=8090 \-Dsentinel.dashboard.auth.username=sentinel \-Dsentinel.dashboard.auth.password=123456 \-jar sentinel-dashboard-1.8.6.jar

image-20230101113639168

  1. 代码配置

    • 选择某一服务
    • 引入依赖并配置地址
    • 启动程序,访问一次**端点(EndPoint)**后Sentinel生效(即访问一个Controller后生效)
    <dependency>    <groupId>com.alibaba.cloudgroupId>    <artifactId>spring-cloud-starter-alibaba-sentinelartifactId>dependency>
    spring:cloud:sentinel:      transport:        dashboard: localhost:8090

    image-20230101135149863

二、簇点链路
  1. 简介:

    即项目内的调用链路,链路中被监控的一个接口就是一个资源

    默认情况下 sentinel 会监控 springMVC 的每一个端点( Controller),因此每一个端点就是调用链中的一个资源,我们可对资源进行如下 4 种操作:

    image-20230101140231266

    • 流控:流量控制

    • 降级:熔断降级

    • 热点:热点参数限流

    • 授权:授权规则

  2. 【注意】

    ​ Sentinel 默认只会将 Controller 中的方法标记为“资源”,如果要标记其他方法(例如 Sevice),则要:

    1. 关闭 Sentinel context 整合模式(该模式为默认模式,会将所有的 Controller 整合成单一链条,而我们现在需要多条链条的模式)
    2. 使用@SentinelResource注解标记方法
    spring:cloud:sentinel:web-context-unify: false
    @SentinelResource("名称")public void queryGoods(){  // err 会打印出“红色标记”,更容易辨认  System.err.println("查询商品")}

image-20230101152503112

image-20230101152423035

三、流控模式
  1. Sentinel提供了 3 种限流模式

    • 直接限流(默认):统计当前资源的请求,触发阈值时对当前资源直接限流。
    • 关联限流:统计与当前资源相关的另一个资源,触发阈值时对当前资源限流。例如存在端点 a 和 b ,本来两者并无关系,现在让两者“关联”,设置当 a 的访问次数达到阈值时,b 停止服务。(即优先 a,另外要限制谁就设置谁 )
    • 链路限流:统计从指定链路访问到本资源的请求,触发阈值对指定链路限流。如端点 a 与 b 均向 c 请求服务,则 c 可以只限制 a 链路,而对 b 链路不限制。(分别对待)

image-20230101150617449

  1. 【关联限流】配置

    利用 update 限制 query,即 update 更新请求具有更高的优先级。

image-20230101151434215

  1. 【链路限流】配置

image-20230101151151251

  1. 失败返回数据

    image-20230101173905216

四、流控效果

image-20230102103813551

  • 快速失败:(默认、漏桶算法)QPS超过阈值,拒绝新的请求
  • Warm Up:缓慢增长,QPS阈值缓慢增长(初始值为阈值的1/3),可以避免冷启动时高并发导致的服务宕机,超过阈值拒绝新的请求。
  • 排队等待:(令牌桶算法)请求会进入队列等待,按照阈值设置的时间间隔依次执行请求,如果请求预期等待的时间大于超时时间,则直接拒绝。
五、热点参数限流

相较于 流控规则 ,热点参数限流规则 更细力度。

  1. 简介:对参数相同的请求进行限流

  2. 配置选项

    image-20230102104822565

  3. 【注意】

    Sentinel 的热点限流规则对只属于 Spring MVC 的资源无效,要想生效则必须标识@SentinelResource注解。

    @SentinelResource("hot")@GetMapping("/hot")public String hot(){  return "hot榜单";}
  4. 案例

    • hot 资源的 0 号参数(第一个参数)做统计,相同参数值的请求每秒不能超过5次。

image-20230102105041400

  • 在上面的前提下,存在例外:参数值为101的请求,阈值应为10。

image-20230102105249446

六、整合Feign

“流控 与 热点”基于 QPS 进行的限流

整合 Feign 可以通过线程数来进行限流

image-20230102123425944

  1. 简介:

    ​ 虽然限流可以尽量避免因高并发而引起的服务故障,但服务还是会因为其他原因而故障。我们要将这些故障控制在一定的范围内、避免雪崩,就要靠线程隔离熔断降级。不管是线程隔离还是熔断降级,都是对客户端(调用方)的保护。

    image-20230102120845381

  2. Feign整合Sentinel步骤

    • 修改服务yaml配置,开启 Feign对 Sentinel 的支持
    • 在 Feign Api 项目中定义反馈类,实现泛型接口FallbackFactory并注册成 Bean 对象。
    • 在 Feign Api 项目中令原先的 UserClient 接口使用新建的反馈类
    feign:  sentinel:    enabled: true

image-20230102122337114

@Slf4jpublic class UserClientFallbackFactory implements FallbackFactory<UserClient> {    @Override    public UserClient create(Throwable throwable) {        return new UserClient() {            @Override            public User findById(Long id) {                log.error("记录失败信息", throwable);                // 发生异常时,返回空对象于前端处理                return new User();            }        };    }}
@Configurationpublic class DefaultFeignConfiguration {    @Bean    public UserClientFallbackFactory factory ( ){        return new UserClientFallbackFactory();    }}

image-20230102122546582

通过对 Feign 的配置控制后,可以在 Sentinel 中设置限制最大并发线程数实现限流

image-20230102124838159

  1. 上步补充:

    给 FeignClient 编写失败后的降级逻辑可以继承自 2 个接口:

    • FallbackClass:无法对远程调用的异常作处理。
    • FallbackFacotory:可以对远程调用的异常作处理(所以我们使用这种方式)。
  2. ==【线程隔离】==简介

    2 种方式。

    • 信号量隔离**( Feign 默认)**:使用PV模式对固定信号量进行分配,有则分、无则拒。
    • 线程池隔离:针对不同的服务请求建立不同的线程池,隔离性高、资源消耗量大。
  3. ==【熔断降级】==简介

    ​ 解决雪崩问题的重要手段,由断路器统计服务的异常比例、慢请求比例,如果超过阈值则会进行熔断(即拒绝服务),一段时间后断路器会再次统计服务异常比例,如果服务良好则恢复正常。

    熔断降级,一共由 3 个阶段,分别为:

    • Closed:正常状态
    • Open:达到阈值,快速失败
    • Halt-Open:尝试放行一次请求进行测试。

    image-20230102135506281

  4. 【断路器】的 3 种熔断策略:

image-20230102140537794

  • 慢调用比例:业务响应时间(RT,Response Time)大于指定时长的请求被认定为慢调用,监控比例。
  • 异常比例:监控指定时间业务产生的异常比例。
  • 异常数:监控指定时间业务产生的异常数。

image-20230102140509066

image-20230102141148581

七、系统规则

只对 Linux 系统有效,保护系统

image-20230102143219660

八、授权规则

image-20230102143357564

  1. 简介:

    • 黑名单、白名单
    • 服务鉴权,例如某微服务只想被网关访问,不想被外网或者内部直接访问,则可以设置白名单规则。
    • 在网关上定义每次发送请求时都会携带相应的“请求头”,如果微服务检测不到该请求头则拒绝响应。
  2. 实现:

    • 某微服务中配置请求解析类(默认全局,有了这个类才能在 Sentinel 中设置鉴权规则,即 value 值)
    • Sentinel 中设置鉴权规则(即 value 值)
    • 网关配置 yaml 文件,标记每次发送请求都自动携带相应请求头
    @Componentpublic class HeaderOriginParser implements RequestOriginParser {    @Override    public String parseOrigin(HttpServletRequest request) {        // cipher 为网关中自定义的请求头 key        String cipher = request.getHeader("cipher");        if (StringUtils.isEmpty(cipher)){            return "blank";        }        return cipher;    }}

image-20230102202737898

spring:  cloud:    gateway:      default-filters:      # 网关每次发送请求都会默认携带的请求头 key-value        - AddRequestHeader=cipher,myPassword
  1. 实现效果:

    • 不经过网关直接访问服务
    http://localhost:8088/order/101

    image-20230102202930330

    • 经过网关访问服务
    http://localhost:10010/order/101?authorization=admin

    image-20230102203042729

九、自定义异常
  1. 简介

    ​ 在前面我们可以观察到无论是被限流、熔断降级、授权拒绝,被请求的微服务总是会返回相同的响应数据Blocked by Sentinel (flow limiting),这对于用户来说并不友好,我们可针对不同的场景定义不同的响应内容。

  2. 可定义的异常类型

image-20230102200244048

  1. 实现方式:自定义 ___BlockHandler并实现 BlockExceptionHandler 接口,返回不同内容。

    @Componentpublic class SentinelExceptionHandler implements BlockExceptionHandler {      @Override    public void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception {        String msg = "未知异常";        int status = 429;      // 自适配异常类型,返回不同内容        if (e instanceof FlowException) {            msg = "请求限流";        } else if (e instanceof ParamFlowException) {            msg = "请求热点参数限流";        } else if (e instanceof DegradeException) {            msg = "请求降级";        } else if (e instanceof AuthorityException) {            msg = "未授权";            status = 401;        }        response.setContentType("application/json;charset=utf-8");        response.setStatus(status);        response.getWriter().println("{\"msg\": " + msg + ", \"status\": " + status + "}");    }}
十、规则持久化

待后续寻找最佳方案并实现,官网教程

  1. 简介:

    Sentinel默认将配置保存在内存中,重启数据丢失。

  2. 数据的 3 种控制台管理模式:

    • 原始模式:(默认)将规则保存在内存中,重启则丢失。
    • Pull 模式:控制台将配置规则推送到 【Sentinel 客户端】,客户端将配置保存在本地文件或数据库,集群中的其他 Sentinel 客户端则定时读取配置(存在问题:时效性慢、更新不及时)。目前支持动态文件数据源、Consul 、Eureka。
    • Push 模式:控制台将配置规则推送到【远程配置中心】(如 Nacos ),其他 Sentinel 客户端则监听 Nacos 实现配置的存储与及时更新。目前支持 ZooKeeper、Redis、Nacos、Apollo、etcd。

    image-20230102211616170

image-20230102211651507

  1. 【注意点】

    ​ 在以上 3 种方式种,Push 模式无疑是最好的,但是阿里在开源 Sentinel 的时候并没有附带此模式,而是将其作为商业版(云服务)进行兜售,所以如果我们不想要付费,并且想要实现 Push 模式的规则持久化,则需要自己改写并编译 Sentinel 程序,实现起来相当复杂。

十一、整合原有项目

​ Sentinel整合原有项目非常简单,只需要引入依赖,然后进行简单的 yml 配置即可,但是需要注意 Sentinel 所兼容的 SpringBoot 版本问题(SpringBoot版本太新时,需要降级)。

​ 但是没有持久化就意味着服务终归还是不稳定!!!

<dependency>    <groupId>com.alibaba.cloudgroupId>    <artifactId>spring-cloud-starter-alibaba-sentinelartifactId>    <version>2021.1version>dependency>
spring:  cloud:    sentinel:      transport:        dashboard: localhost:8090  # 存在一些“循环依赖”的情况,下面配置允许忽略这种情况(否则报错)  main:    allow-circular-references: true

十二、分布式事务 Seata

1、简介

  1. 事务基本要求:ACID,原子性、一致性、隔离性、持久性。

  2. 本章解决问题:

    ​ 基于微服务的分布式事务。在分布式系统下,一个业务跨越多个服务或数据源,每个服务都是一个分支事务,要保证所有分支事务最终状态一致,这样的事务就是分布式事务。

  3. CAP定理

    1998年,加州大学的计算机科学家 Eric Brewer 提出,分布式系统有 3 个指标:

    • Consistency:一致性
    • Available:可用性
    • Partition tolerance:分区容错性

    于是 CAP 定理的内容为:

    • 分布式系统节点通过网络连接,一定会出现分区问题(P)
    • 当分区出现时,系统的一致性(C)和可用性(A)就无法同时满足

    我们之前搭建的 Elasticsearch 集群属于 CP,不属于 AP。

  4. BASE理论

    解决CAP存在的问题

    • Basically Available(基本可用):在分布式系统出现故障时,允许损失部分可用性,但保证核心可用。
    • Soft State(软状态):在规定时间内允许出现不一致状态。
    • Eventually Consistent(最终一致性):数据最终会达到一致性。

    解决的方式:

    • 【AP模式】:各子事务分别提交,允许出现结果的不一致,然后采用措施恢复数据,最终达到一致性。
    • 【CP模式】:各子事务执行后互相等待,同时提交、同时回滚,最终达到一致性。但在事务等待的过程,本次服务处于弱可用,同时因为各子事务必须彼此感知各自事务状态才能保证一致性,因此需要一个“事务协调者”负责协调,由此也诞生出了全局事务、分支事务的概念。

    image-20230103095127280

2、Seata简介

分布式事务解决方案,http://seata.io/zh-cn/

每个微服务都需配置 Seata,略微繁琐

  1. 简介:

    • Seata 是 2019 年 1 月份蚂蚁金服与阿里巴巴共同开源的分布式事务解决方案,致力于提供高性能和简单易用的分布式事务服务。
    • Seata 将为用户提供了 AT、TCC、SAGA 和 XA 事务模式,为用户打造一站式的分布式解决方案。

image-20230103100757117

  1. Seata 事务中有 3 个重要角色

    • TC(Transaction Coordinator)事务协调者:维护全局事务和分支事务的状态,协调全局事务的提交与回滚。
    • TM(Transaction Manager)事务管理器:定义全局事务的范围,开启、提交或回滚全局事务。
    • RM(Resource Manager)资源管理器:管理分支事务,向 TC 注册分支事务并报告状态,提供分支事务的提交与回滚功能。

    Seata 就是 TC(作为TC,搭建成功后我们不需要访问它,这是给 TM 和 RM 访问的),企业中需要搭建集群。

    image-20230103100039651

  2. Seata提供了 4 种不同的分布式事务处理方案:

    • XA模式:强一致性分布阶段事务模式,牺牲一定可用性,无业务侵入。
    • AT模式(默认):最终一致的分阶段事务模式,无业务侵入。
    • TCC模式:最终一致的分阶段事务模式,有业务侵入。
    • SAGA模式:长事务模式,有业务侵入。

    image-20230104110821379

3、安装

  1. 下载 seata-server 包并解压:https://github.com/seata/seata/releases

image-20230103125550806

  1. 修改conf目录下的application.yml文件

    2版本为registry.conf

    server:  port: 7091spring:  application:    name: seata-serverlogging:  config: classpath:logback-spring.xml  file:    path: ${user.home}/logs/seata  # 若无以下配置则注释  # extend:  #   logstash-appender:  #     destination: 127.0.0.1:4560  #   kafka-appender:  #     bootstrap-servers: 127.0.0.1:9092  #     topic: logback_to_logstashconsole:  user:    username: seata    password: seataseata:# 配置中心  config:    type: nacos    nacos:      server-addr: 127.0.0.1:8848      namespace: ""# 命名空间为空,默认 public      group: SEATA_GROUP      username: nacos      password: nacos      data-id: seataServer.properties  # 注册中心  registry:    type: nacos    nacos:      server-addr: 127.0.0.1:8848      namespace: ""      group: DEFAULT_GROUP      username: nacos      password: nacos      cluster: SH # SH表示上海  # 已经配置了 nacos 作为配置中心,所以这里 store 与 server 不配置  # store:    # support: file 、 db 、 redis    # mode: file#  server:#    service-port: 8091 #If not configured, the default is '${server.port} + 1000'  security:    secretKey: SeataSecretKey0c382ef121d778043159209298fd40bf3850a017    tokenValidityInMilliseconds: 1800000    ignore:      urls: /,/***.js,/***.map,/***.png,/**/*.ico,/console-fe/public/**,/api/v1/auth/login
  2. 新建数据库 seata,在此基础上新增两张表branch_tableglobal_table作事务管理。

    SET NAMES utf8mb4;SET FOREIGN_KEY_CHECKS = 0;DROP TABLE IF EXISTS `branch_table`;CREATE TABLE `branch_table`  (  `branch_id` bigint(20) NOT NULL,  `xid` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,  `transaction_id` bigint(20) NULL DEFAULT NULL,  `resource_group_id` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,  `resource_id` varchar(256) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,  `branch_type` varchar(8) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,  `status` tinyint(4) NULL DEFAULT NULL,  `client_id` varchar(64) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,  `application_data` varchar(2000) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,  `gmt_create` datetime(6) NULL DEFAULT NULL,  `gmt_modified` datetime(6) NULL DEFAULT NULL,  PRIMARY KEY (`branch_id`) USING BTREE,  INDEX `idx_xid`(`xid`) USING BTREE) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Compact;DROP TABLE IF EXISTS `global_table`;CREATE TABLE `global_table`  (  `xid` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,  `transaction_id` bigint(20) NULL DEFAULT NULL,  `status` tinyint(4) NOT NULL,  `application_id` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,  `transaction_service_group` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,  `transaction_name` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,  `timeout` int(11) NULL DEFAULT NULL,  `begin_time` bigint(20) NULL DEFAULT NULL,  `application_data` varchar(2000) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,  `gmt_create` datetime NULL DEFAULT NULL,  `gmt_modified` datetime NULL DEFAULT NULL,  PRIMARY KEY (`xid`) USING BTREE,  INDEX `idx_gmt_modified_status`(`gmt_modified`, `status`) USING BTREE,  INDEX `idx_transaction_id`(`transaction_id`) USING BTREE) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Compact;SET FOREIGN_KEY_CHECKS = 1;
  3. Nacos 新建配置文件

    为 Seata 集群作准备

    Nacos创建seataServer.properties配置文件,修改 MySQL 数据库信息,其余配置默认。

image-20230103153636718

# 数据存储方式,db代表数据库store.mode=dbstore.db.datasource=druidstore.db.dbType=mysqlstore.db.driverClassName=com.mysql.cj.jdbc.Driverstore.db.url=jdbc:mysql://127.0.0.1:3306/seata?useUnicode=true&rewriteBatchedStatements=truestore.db.user=rootstore.db.password=数据库密码store.db.minConn=5store.db.maxConn=30store.db.globalTable=global_tablestore.db.branchTable=branch_tablestore.db.queryLimit=100store.db.lockTable=lock_tablestore.db.maxWait=5000# 事务、日志等配置server.recovery.committingRetryPeriod=1000server.recovery.asynCommittingRetryPeriod=1000server.recovery.rollbackingRetryPeriod=1000server.recovery.timeoutRetryPeriod=1000server.maxCommitRetryTimeout=-1server.maxRollbackRetryTimeout=-1server.rollbackRetryTimeoutUnlockEnable=falseserver.undo.logSaveDays=7server.undo.logDeletePeriod=86400000# 客户端与服务端传输方式transport.serialization=seatatransport.compressor=none# 关闭metrics功能,提高性能metrics.enabled=falsemetrics.registryType=compactmetrics.exporterList=prometheusmetrics.exporterPrometheusPort=9898
  1. 启动:

    Linux 选择.shwindows 选择.bat

    另外注意这里可能会报nohup: /Library/Internet: No such file or directory错误,原因是JDK路径查找失败,解决方式见我的另一篇博客

    ./bin/seata-server.sh
  2. 查看启动日志:/seata/logs/start.out判断是否启动成功。

  3. 微服务中引入依赖并配置连接

    <dependency>    <groupId>com.alibaba.cloudgroupId>    <artifactId>spring-cloud-starter-alibaba-seataartifactId>      <exclusions>        <exclusion>            <artifactId>seata-spring-boot-starterartifactId>            <groupId>io.seatagroupId>        exclusion>    exclusions>dependency><dependency>    <groupId>io.seatagroupId>    <artifactId>seata-spring-boot-starterartifactId>    <version>1.6.1version>dependency>

    nacos服务名称必须包括 4 部分,而且每个微服务都必须配置这些信息,微服务将根据这些信息去注册 Seata。

    namespace

    group

    serviceName

    cluster

    seata:  registry:    type: nacos    nacos:      server-addr: 127.0.0.1:8848      namespace: ""      group: DEFAULT_GROUP      application: seata-server# TC 在 Nacos 中的名称      tx-service-group: seata-demo      service:        vgroup-mapping:          seata-demo: SH

image-20230103154337068

  1. 重启微服务,查看 Seata 日志

image-20230103191850421

4、XA规范

image-20230103215608119

  1. 分阶段事务模式,几乎所有的主流数据库都对其提供了支持。

  2. 示意图:

    image-20230103193706690

  3. 优点:

    • 事务具有强一致性,满足ACID
    • 常用数据库均支持,实现简单、无代码侵入
  4. 缺点:

    • 事务之间耦合度很高
    • 事务之间相互等待,性能较差
    • 事务的实现依赖于关系型数据库
  5. 实现步骤

    • 各微服务附加配置后重启
    • 业务 Service 加 全局事务注解 @GlobalTransaction
    seata:data-source-proxy-mode: XA# 使用 XA 模式
    @Override@GlobalTransactionalpublic void create(Order order) {    // 创建订单    // 扣用户余额    // 扣库存}
  6. 【补充说明】data-source-proxy-mode配置的作用:

    ​ 设置数据源代理模式,Seata 通过劫持数据源data-source来实现分布式事务的管理,配置后所有事务都将由 Seata 托管。

5、AT模式

默认

image-20230103215608119

  1. 同样是分阶段事务模式,弥补了 XA 模式中资源定周期过长的缺陷,但同时也牺牲了一些安全性。

  2. 示意图:允许先成功,后续使用 undo log 进行回滚。

    image-20230103215921725

  3. 【脏读问题】

    这里阐述比较复杂,总之 AT 模式就是牺牲一定的安全性换来效率

  • 由于各事务在一定程度上存在“独立性”,所以 AT 模式存在“脏读”现象。

  • AT 模式新增**【全局锁】**用来防止数据脏读,当数据遇到同时 update 请求时,全局锁会限制另一方的提交,直到原来的一方释放全局锁,此时 AT 模式相当于退化为 XA 模式。

  • 但是全局锁只能作用于 Seata 事务,也就是说对非 Seata 管理的事务无效,在这种情况下依旧会产生“脏读”现象(无法解决)。幸运的是,Seata 能察觉这种现象的产生并抛出异常,我们可以捕获这种异常并编写代码发送邮件告知服务管理者。

  • 当数据没有发生“脏读”问题时,AT模式效率较高,原因如下:

    • 事务分布式提交,突破“木桶效应”限制。

      • Seata 的“全局锁”粒度较细,只锁字段中的具体数据,对相同字段的其他数据无影响。
      • MySQL 属于“粗粒度”锁,会锁住整张表,极大的降低效率。
      // 例如在下面字段中,当 name 被某事务支配时,money字段并不受影响{"id":1,"name":"张三","money":100}

    image-20230103224221821

  1. 【 XA模式 与 AT模式 总结】

    ​ AT模式牺牲的只是一些比较小的安全性(sava 与 update 属于“小概率”操作),换来的是极大的效率提升,在业务sava 与 update 次数较少且安全性要求不高的数据库,应优先使用AT模式。

  2. 实现步骤

    • 数据库新建 2 张表,存储在不一样地方
      • lock_table:导入到与 TC(即 Seata 服务端)相关联的数据库
      • undo_log:导入到与微服务相关的数据库(也就是在每个相关的微服务数据库中都需要导入undo_log表)
    • 修改相关微服务的application.yml配置文件,声明为使用 AT 模式(其实默认模式)。
    DROP TABLE IF EXISTS `lock_table`;CREATE TABLE `lock_table`  (  `row_key` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,  `xid` varchar(96) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,  `transaction_id` bigint(20) NULL DEFAULT NULL,  `branch_id` bigint(20) NOT NULL,  `resource_id` varchar(256) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,  `table_name` varchar(32) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,  `pk` varchar(36) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,  `gmt_create` datetime NULL DEFAULT NULL,  `gmt_modified` datetime NULL DEFAULT NULL,  PRIMARY KEY (`row_key`) USING BTREE,  INDEX `idx_branch_id`(`branch_id`) USING BTREE) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Compact;
    DROP TABLE IF EXISTS `undo_log`;CREATE TABLE `undo_log`  (  `branch_id` bigint(20) NOT NULL COMMENT 'branch transaction id',  `xid` varchar(100) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT 'global transaction id',  `context` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL COMMENT 'undo_log context,such as serialization',  `rollback_info` longblob NOT NULL COMMENT 'rollback info',  `log_status` int(11) NOT NULL COMMENT '0:normal status,1:defense status',  `log_created` datetime(6) NOT NULL COMMENT 'create datetime',  `log_modified` datetime(6) NOT NULL COMMENT 'modify datetime',  UNIQUE INDEX `ux_undo_log`(`xid`, `branch_id`) USING BTREE) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci COMMENT = 'AT transaction mode undo table' ROW_FORMAT = Compact;
    seata:data-source-proxy-mode: AT

6、TCC模式

image-20230103215608119

TCC模式效率很高,但过于复杂

具体案例见:链接

  1. 简介

    需编写代码分别实现 3 个阶段

    • Try:资源检查和预留
    • Confirm:业务执行和提交
    • Cancel:预留资源释放
  2. 示意图:

    image-20230104092446185

  3. 优点

    • 分布式提交事务,效率高
    • 相比 AT 模式,无需生成快照(即 undo_log)、无需使用全局锁,性能最强
    • 依赖补偿操作,不依赖数据库事务,可用于非事务型数据库
  4. 缺点

    • 代码侵入性很强,需同时编写 try、confirm、cancel 接口,特别繁琐与麻烦
    • 事务最终一致而不是强一致
    • 需要考虑Confirm与Cancel失败的情况,即做好幂等处理
    • 另外需要注意空回滚的情况
  5. 【名词解释】

    • 空回滚:当某分支事务的 try 阶段阻塞时,可能导致全局事务超时而触发其他服务的 cancel 操作。在未执行 try 操作时先执行了 cancel 操作,这时 cancel 不能做回滚,就是空回滚。
    • 幂等处理:对于已经空回滚的业务,如果以后继续执行 try,就永远不可能 confirm 或 cancel ,这就是业务悬挂(应当阻止执行空回滚后的 try 操作,避免悬挂)。
  6. 举例

    image-20230104104318338

    image-20230104110106289

7、SAGA模式

image-20230103215608119

TCC模式的“简化版”,牺牲了一定的安全性,存在数据“脏读”风险

Saga模式在实际中很少被运用

  1. 简介:

    Saga模式是 Seata 提供的长事务解决方案,具体分为两个阶段:

    • 一阶段:直接提交本地事务
    • 二阶段:成功则什么也不做,失败则通过编写补偿业务回滚
  2. 优点:

    • 类似 TCC,但不用编写 TCC 中 3 个阶段,实现简单
    • 事务参与者可以基于事件驱动实现异步调用,吞吐量高
    • 无锁,一阶段直接提交事务,性能好
  3. 缺点:

    • 没有锁与事务隔离性,存在数据“脏写”情况
    • 软状态持续的时间不确定,时效性较差

十三、分布式缓存 Redis

1、简介

  1. 单点 Redis 存在问题(附解决方案):

    • 数据易丢失:设置持久化,将部分数据由内存转移至外存
    • 并发能力弱:搭建主从集群,实现读写分离
    • 故障恢复能力弱:利用 Redis 哨兵,实现健康监测与自动恢复
    • 存储能力弱:搭建分片集群,利用插槽机制实现动态扩容
  2. 下面将根据以上 4 个问题实现解决方案。

  3. Docker 安装 Redis

    • 新建配置文件redis.conf(必须设置密码,防止漏洞攻击)与存放目录
    • Docker 启动 Redis
    • 本机测试
    mkdir -p /myredis/conf/vim /myredis/conf/redis.conf
    requirepass 密码
    docker run -d\-v /myredis/conf:/usr/local/etc/redis \--name myredis \-p 6379:6379 \redis \redis-server /usr/local/etc/redis/redis.conf
    redis-cli -h 175.178.20.191 -p 6379# 回车后auth 密码

2、Redis持久化

一、RDB
  1. Redis Database Backup file:Redis数据备份文件,也叫“Redis数据快照”。简单来说就是把内存中的所有数据都记录到磁盘中,当发生故障重启时,从磁盘读取快照恢复数据。

  2. 快照文件称为 RDB 文件,默认保存在当前运行目录,我们由两种生成方式:

image-20230104122222637

另外:Redis在停机时默认会自动执行一次 RDB。

image-20230104123102938

二、AOF

3、Redis主从

4、Redis哨兵

5、Redis分片集群

十四、分布式消息 RabbitMQ

1、简介

  1. 简介
    • 消费可靠性问题:如何确保发送的消息至少被消费一次
    • 延迟消息问题:如何实现消息的延迟投递
    • 消息堆积问题:如何解决消息堆积,无法消费的问题
    • 高可用问题:如何避免单点的 MQ 故障而导致的不可用问题
  2. 后续章节
    1. 消息可靠性
    2. 死信交换机(死亡信息的交换机)
    3. 懒惰队列
    4. MQ集群

2、可靠性问题

一、简介
  1. 存在 3 种消息丢失类型

    1. 发送时丢失
      • 生产者发送的消息未到达exchange
      • 消息到达 exchange 后未到达 queue
    2. MQ 宕机,queue将消息丢失
    3. consumer接收到消息后未消费就宕机

    image-20230104145445766

  2. 【注意】:

    在确认机制发送消息时,需要给每个消息设置全局唯一的 id,用以区分不同的消息,避免 ack 冲突。

二、生产者确认机制
  1. 简介

    ​ RabbitMQ 提供了 publisher confirm 机制来避免消息在发送到 MQ 过程中丢失。即消息在发送到 MQ 后,会返回结果给发送方,表示消息投递状态。有两种结果:

    1. publisher-confirm,发送者确认
      • 消息成功投递倒交换机,返回ack
      • 消息未投递到交换机,返回nack
      • 消息发送过程中出现异常,没有收到回执
    2. publisher-return,发送者回执
      • 消息投递到交换机,但是没有路由到队列,返回ack及路由失败原因

    image-20230104150753281

  2. 实现方式:

    • 配置消息发送者
    • 消息发送者中编写publisher-confirmpublisher-return响应代码
  3. 编写配置文件

    spring:  rabbitmq:    host: 175.178.20.191    port: 5672    username: user    password: 123    virtual-host: /    # 下面配置为本节新增 RabbitMQ 配置    template:      mandatory: true    publisher-confirm-type: correlated    publisher-returns: true

    配置说明:

    • template.mandatory:定义消息路由失败时的策略,true表示调用 ReturnCallback ;false表示丢弃消息。
    • publisher-confirm-type:开启 publisher-confirm ,支持两种类型:
      • simple:同步等待 confirm 结果,直至超时(性能较差)
      • correlated异步回调,定义 ConfirmCallback ,MQ返回结果时会回调这个ConfirmCallback。
    • publish-returns:开启 publish-return 功能,定义 ReturnCallback

image-20230104164019467

  1. 【测试时使用】自建消息队列并绑定路由

    • 自建队列

image-20230104182514061

  • 路由绑定

image-20230104182558925

  1. 【代码编写】

    image-20230104150753281

    • ReturnCallback编写:每个 RabbitTemplete 只能配置一个 ReturnCallback(而 RabbitTemplete 也是全局唯一的),因此我们可以利用ApplicationContextAware进行配置(方式多样,唯一即可)。
    @Slf4j@Configurationpublic class CommonConfig implements ApplicationContextAware {    @Override    public void setApplicationContext(ApplicationContext applicationContext) throws BeansException {        // 获取 RabbitTemplate        RabbitTemplate rt = applicationContext.getBean(RabbitTemplate.class);        // 设置 ReturnCallback:失败记录日志      // 【注意】:这里可编写消息重发代码,或邮件通知管理员        rt.setReturnCallback((msg, replyCode, replyText, exchange, routingKey) -> {            log.info("消息发送到队列失败,应答码{},原因{},交换机{},路由键{},消息{}",                    replyCode, replyText, exchange, routingKey, msg);        });    }}
    • ConfirmCallback:每次发送消息时携带(可配置多个),维护其全局唯一 ID 。

    @Testpublic void postMsg() {    String msg = "Hello RabbitMQ!";    // 定义异步回调 CorrelationData,并赋予全局唯一 ID(UUID,作辨识)    CorrelationData correlation = new CorrelationData(UUID.randomUUID().toString());    // 类似 ajax,3种结果    correlation.getFuture().addCallback(            result -> {                if (result.isAck()) {                    log.debug("消息发送成功投递到交换机,ID:{}", correlation.getId());                } else {                    log.error("消息投递到交换机失败,ID:{},原因:{}",correlation.getId(), result.getReason());                }            },            ex -> {                log.error("消息发送失败,ID:{},原因:{}",                        correlation.getId(), ex.getMessage());            }    );    // 发送消息时附加上异步回调 correlation 的定义    rabbitTemplate.convertAndSend("amq.direct", "simple", msg, correlation);      // 这里是 Test 测试环境,休眠 2s 等待消息的回执    // 否则 MQ 会收不到消息回执,而认为消息投递到交换机失败    Thread.sleep(2000);}

    image-20230104170637330

  2. 测试

    1. 成功

      image-20230104183908747

    2. 提供错误的路由地址

      rabbitTemplate.convertAndSend("error.amq.direct", "simple", msg, correlation);

      image-20230104184423628

    3. 提供错误的队列名

      rabbitTemplate.convertAndSend("amq.direct", "error.simple", msg, correlation);

      image-20230104184608413

三、消息持久化

SpringAMQP 规范定义路由、队列以及消息的创建默认都是durable 持久化的。

  1. 简介:MQ 默认内存存储消息,开启持久化功能可以避免缓存在 MQ 中的消息丢失。

  2. 类型分类

    • durable:持久化
    • transient:暂时性的
  3. 持久化(代码创建版)

    以下都是默认持久化的,如果需要暂时性的配置再更改即可

    • 交换机持久化
    @Beanpublic DirectExchange simpleExchange(){    // 三个参数:交换机名称、是否持久化、当没有queue与其绑定时是否删除    return new DirectExchange("simple.direct",true,false);  // return new DirectExchange("simple.direct",false,false);}
    • 队列持久化
    @Beanpublic Queue simpleQueue(){    return QueueBuilder.durable("simple.queue").build();  // return QueueBuilder.nonDurable("simple.queue").build();}
    • 消息持久化
    Message message = MessageBuilder.withBody("msg".getBytes("UTF-8"))        .setDeliveryMode(MessageDeliveryMode.PERSISTENT)  // .setDeliveryMode(MessageDeliveryMode.NON_PERSISTENT)        .build();rabbitTemplate.convertAndSend(message);
  4. 持久化(图形界面版)

    • 交换机与队列:勾选 durable 就行

image-20230104213619118

  • 消息:选择 Persistent(代号2)

image-20230104213756922

  1. 如何查看某条消息是否属于“持久化消息”?

    image-20230104213951996

四、消费者消息确认
  1. RabbitMQ 支持消费者确认机制,即消费者在处理完信息后向MQ发送回执,MQ收到回执之后才会正式删除该消息。

  2. SpringAMQP 可以配置 3 种【确认模式】:

    消息接收方中配置

    • manual:手动 ack,需要在业务代码结束后,调用 API 发送 ack。
    • auto(默认):自动 ack,由 Spring 监测消费者是否发生异常,没有异常返回 ack,否则返回 nack。
    • none:关闭 ack,MQ只负责将消息转发出去然后删除,不负责验证。
    spring:  rabbitmq:    host: 175.178.20.191    port: 5672    username: user    password: 123    virtual-host: /    listener:      simple:        prefetch: 1        # 配置消息确认机制        acknowledge-mode: auto
  3. 【注意】:当确认模式为 “auto” (而且就是这种方式),没有配置【失败重试模式】时,生产者的消息会一直处于“悬挂”状态(即每次都没有被真正消费),消费者会无限循环的从生产者获取消息,造成严重的资源空转浪费。

    image-20230105093516766

  4. 【失败重试模式】设置:

    注意initial-interval规定的是第一次立即读取失败后的等待时间,并不是第一次读取前的等待时间!需理。

    spring:  rabbitmq:    host: 175.178.20.191    port: 5672    username: user    password: 123    virtual-host: /    listener:      simple:        prefetch: 1        acknowledge-mode: auto        # 设置【失败重试模式】        retry:          enabled: true          initial-interval: 1000   # 第一次立即读取,第二次(即初始等待时长)为 1s          multiplier: 2     # 下次等待时长倍数,下次等待时长=上次等待时长 * 等待时长倍数          max-attempts: 3   # 最大重试次数          max-interval: 60000   # 最大等待时间间隔(我这可不设)          stateless: true       # true表无状态(默认),false表有状态(业务包含事务时需设)
  5. 在上述设置情境,消息一旦达到重试次数的限制后,即被丢弃。然而有时候我们却并不想直接把消息丢弃,而是想把它保存下来(例如用日志的形式),这时候就需要更改**【消费者失败信息处理策略】**,我们有 3 种形式:

    实际就是覆盖 Spring 默认的 Bean:MessageRecoverer(是接口)

    • RejectAndDontRequeueRecoverer(默认):重试耗尽后,直接 reject,丢弃消息。
    • ImmediateRequeueMessageRecoverer:重试耗尽后,返回 nack,消息重新入队。
    • RepublishMessageRecoverer:重试耗尽后,将失败消息投递到指定的交换机

image-20230105100101801

我们以实现第 3 种方式为例:

image-20230105095154016

代码创建负责处理“已经死亡的信息”的交换机、队列,并绑定两者

@Configurationpublic class CommonConfig {    @Bean    public DirectExchange errorExchange() {        return new DirectExchange("error.direct");    }    @Bean    public Queue errorQueue() {        return new Queue("error.queue", true);    }    @Bean    public Binding errorBinding() {        return BindingBuilder.bind(errorQueue())                .to(errorExchange())                .with("error");    }}

定义RepublishMessageRecoverer(即覆盖 Spring 默认的 Bean):

@AutowiredRabbitTemplate rabbitTemplate;@Beanpublic MessageRecoverer RepublishMessageRecoverer() {    return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");}

image-20230105101308525

3、死信交换机

一、简介
  1. 概念理解:

    • 死信:当一个队列中的消息满足以下情况之一事时,便可以称为死信
      • 消费者使用 basic.reject 或 basic.nack 声明消费失败,消息的 requeue 参数设置为 false
      • 消息过期,无人消费
      • 队列消息堆积过多,最早的消息被抛弃
    • 死信交换机:如果一个队列配置了 dead-letter-exchange 属性,并且指定了一个交换机,那么队列中的所有死信就会投递到这个交换机中,而这个交换机也被成为“死信交换机”。
  2. 【死信交换机】与上节的【消费者失败信息处理策略】区别:

    1. 死信交换机由**“队列”**负责转发,而消费者失败信息处理策略由消费者负责转发
    2. 死信交换机可以实现的功能更加丰富

    image-20230105104752046

    image-20230105104704442

二、TTL

Time To Live,存活时间(默认未设置

  1. 如果一个队列中的消息在 TTL 结束时仍未被消费,则会变为“死信”,具体可以分为 2 种情况:

    • 消息所在的队列设置了存活时间
    • 消息本身设置了存活时间

    **注意:**如果两者同时设置了,则以【时间短的】为准!

  2. 应用

    1. 设置消息的超时时间
    2. 延迟消费者对消息的接收
  3. 简单实现:设置超时时间 与 延迟消费者对消息的接收

    image-20230105112915695

    • TTL队列:超时时长为 10s
    @Beanpublic DirectExchange ttlExchange() {    return new DirectExchange("ttl.direct");}@Beanpublic Queue ttlQueue() {    return QueueBuilder.durable("ttl.queue")            .ttl(10000)            // 指定超时后转发的“死信交换机”与其 routingKey            .deadLetterExchange("dl.direct")            .deadLetterRoutingKey("dl")            .build();}@Beanpublic Binding ttlBinding() {    return BindingBuilder.bind(ttlQueue())            .to(ttlExchange())            .with("ttl");}
    • 对应“死信交换机”的创建(注解方式),以及消费者监听
    @RabbitListener(bindings = @QueueBinding(        value = @Queue("dl.queue"),        exchange = @Exchange("dl.direct"),        key = "dl"))public void listenDlQueue(String msg){    log.info("接收到 dl.queue 的延迟消息:{}",msg);}
    • 测试:发送消息,TTL设置为 5s
    @Testpublic void testTTLMsg( ) throws UnsupportedEncodingException {    Message msg =MessageBuilder            .withBody("hello ttl".getBytes("UTF-8"))            .setExpiration("5000")            .build();    // 消息 ID,需要封装到 CorrelationData 中    CorrelationData correlation = new CorrelationData(UUID.randomUUID().toString());    // 发送消息    rabbitTemplate.convertAndSend("ttl.direct","ttl",msg,correlation);}
三、延迟队列
  1. 上节利用 TTL 结合死信交换机的方式虽然能实现消息的延迟接收,但是我们可以有更加简便的办法。

  2. 延迟队列的使用场景

    • 延迟发送短信
    • 用户下单,若在规定时间内未完成付款则取消订单
    • 预约工作会议,20分钟后通知所有参会人员
  3. “延迟插件”原理

    ​ 对官方原生的路由 Exchange 做了功能升级,衍生出 DelayExchange ,其会将接收到的消息暂存在内存中直至“过期”(而官方的 Exchange 是无法存储消息的),过期后将消息投递到队列中。

  4. 安装“延迟队列”插件

    前提:安装 RabbitMQ 时需创建“配置”插件目录容器卷

    插件全称:rabbitmq_delayed_message_exchange-3.11.1.ez

    • RabbitMQ有一个官方的插件社区,进入查找 DelayExchange 插件,点击 release 进入 GitHub 下载
    • 查看 RabbitMQ 插件容器卷的挂载地址,将插件直接上传到该目录(目录自带许多官方插件)
    • 进入MQ容器内部,执行指令开启插件
    • 重启容器
    docker volume inspect 容器卷名

image-20230105163030412

docker exec -it 容器名 bash
rabbitmq-plugins enable rabbitmq_delayed_message_exchange

image-20230105163303736

docker restart 容器名

插件安装成功之后,我们就可以在发送消息时直接指定消息的延迟时间,而无需其他繁杂配置。

  1. 【延迟队列实现】

    • 图形界面版:先创建 DelayExchange,绑定队列,后续将消息转发至队列时,只需要增加请求头x-delay并附上时间数值即可。

image-20230105164721034

image-20230105170725256

image-20230105170754182

向 DelayExchange 发送消息

image-20230105171439045

  • 代码版:基于注解,基于 Bean 两种形式
@RabbitListener(bindings = @QueueBinding(        value = @Queue("delay.queue"),  // delayed 属性为 true        exchange = @Exchange(name = "delay.direct",delayed ="true" ),        key = "delay"))public void delayQueue(String msg){    log.info("接收到 dl.queue 的延迟消息:{}",msg);}
@Beanpublic DirectExchange delayExchange() {    return ExchangeBuilder.directExchange("delay.direct")            .delayed()// 设置则属性为 true            .build();}// 这里代码只负责创建,后续自行绑定队列

发送消息样板:添加请求头x-delay : 时间(单位毫秒)即可。

Message msg =MessageBuilder        .withBody("消息体.getBytes("UTF-8"))        .setHeader("x-delay",5000)// 设置延迟时间        .build();                  // 消息 ID,需要封装到 CorrelationData 中CorrelationData correlation = new CorrelationData(UUID.randomUUID().toString());rabbitTemplate.convertAndSend("delay.direct","delay",msg,correlation);

4、消息堆积及惰性队列

  1. 消息堆积问题:

    ​ 当生产者发送消息的速度超过了消费者处理消息的速度,就会导致队列中的消息堆积,直至达到上限;这时最早接收到的消息很有可能就会成为“死信”。

  2. 解决消息堆积的 3 种思路:

    • 增加消费者数量
    • 在消费者内部开启线程池加快消息的处理速度
    • 扩大队列容积,提高堆积上限
  3. 惰性队列

    从 RabbitMQ 3.6.0 开始,新增 Lazy Queues (惰性队列)概念。

    • Queue 接收到消息后直接将其存储至磁盘,而非内存
    • 当 消费者 要 消费 消息时, Queue 才会将消息加载到内存
    • 支持数以百万计的消息存储(因为是在磁盘中而不是内存)
  4. 设置惰性队列的 2 种方式:

    • 未声明的队列:在声明队列时,指定 x-queue-mode属性为lazy
    @RabbitListener(bindings = @QueueBinding(  // 设置为“惰性队列”        value = @Queue(name="dl.queue",                       arguments=@Argument(name="x-queue-mode",value="lazy")),        exchange = @Exchange("dl.direct"),        key = "dl"))public void listenDlQueue(String msg){    log.info("接收到 dl.queue 的延迟消息:{}",msg);}
    @Beampublic void lazyQueue(){  return QueueBuilder.durable("lazy.queue").lazy().build(;)}
    • 已声明的队列:修改队列属性值 queue-modelazy
    # 正则表达式匹配,--apply-to queues 令所有匹配的队列属性值均修改rabbitmqctl set_policy Lazy "^lazy-queue$" '{"queue-mode":"lazy"}' --apply-to queues

5、MQ集群

集群搭建,后续完善

注意!集群是指的是 Queue队列 集群!

一、集群分类

RabbitMQ由 Erland语言(面向并发) 编写,天然支持集群模式,传统的 RabbitMQ 支持 2种集群模式:

  1. 普通镜像(分布式集群)
  2. 镜像集群(主从备份,提升数据安全性)

镜像集群虽然支持集群,但是主从同步并不是强一致的,在某些情况下可能存在数据丢失的风险。因此官方在 RabbitMQ 3.8 版本之后推出了新的集群模式仲裁队列代替镜像集群,其底层使用 Raft 协议确保主从数据一致。

二、普通集群
  1. 简介:Classis Cluster,普通集群、经典集群。

  2. 特性

    • 集群不进行数据同步
    • 队列间元数据信息互相拥有。所有队列均知道其他队列的存在,并且拥有它们的详情信息。
    • 队列间消息数据互通(不是互相拥有)。例如我们拥有 2 个队列 MQ1 和 MQ2 ,想要的数据在 MQ2 中,但是我们却连接到了 MQ1 中,于是 MQ1 就会去 MQ2 中拉取消息然后再返回数据给你;如果此时 MQ2 宕机,则无法获取消息。

    下面为 黑马程序员 提供的“在相同 Docker 环境”的伪集群搭建教程

  3. 我们先来看普通模式集群,我们的计划部署3节点的mq集群:

    主机名控制台端口amqp通信端口
    mq18081 —> 156728071 —> 5672
    mq28082 —> 156728072 —> 5672
    mq38083 —> 156728073 —> 5672

    集群中的节点标示默认都是:rabbit@[hostname],因此以上三个节点的名称分别为:

    • rabbit@mq1

    • rabbit@mq2

    • rabbit@mq3

  4. 获取cookie

    RabbitMQ底层依赖于Erlang,而Erlang虚拟机就是一个面向分布式的语言,默认就支持集群模式。集群模式中的每个RabbitMQ 节点使用 cookie 来确定它们是否被允许相互通信。

    要使两个节点能够通信,它们必须具有相同的共享秘密,称为Erlang cookie。cookie 只是一串最多 255 个字符的字母数字字符。

    每个集群节点必须具有相同的 cookie。实例之间也需要它来相互通信。

    我们先在之前启动的mq容器中获取一个cookie值,作为集群的cookie。执行下面的命令:

    docker exec -it mq cat /var/lib/rabbitmq/.erlang.cookie

    可以看到cookie值如下:

    FXZMCVGLBIXZCDEMMVZQ

    接下来,停止并删除当前的mq容器,我们重新搭建集群。

    docker rm -f mq
  5. 准备集群配置

    在/tmp目录新建一个配置文件 rabbitmq.conf:

    vim /tmp/rabbitmq.conf

    文件内容如下:

    loopback_users.guest = falselisteners.tcp.default = 5672cluster_formation.peer_discovery_backend = rabbit_peer_discovery_classic_configcluster_formation.classic_config.nodes.1 = rabbit@mq1cluster_formation.classic_config.nodes.2 = rabbit@mq2cluster_formation.classic_config.nodes.3 = rabbit@mq3

    再创建一个文件,记录cookie

    # 写入cookieecho "FXZMCVGLBIXZCDEMMVZQ" > /tmp/.erlang.cookie# 修改cookie文件的权限chmod 600 .erlang.cookie
    echo "LNFBFJDGJUGVBTXDJJYE" > .erlang.cookie

    准备三个目录,mq1、mq2、mq3:

    cd /tmp# 创建目录mkdir mq1 mq2 mq3

    然后拷贝rabbitmq.conf、cookie文件到mq1、mq2、mq3:

    # 进入/tmpcd /tmp# 拷贝cp rabbitmq.conf mq1cp rabbitmq.conf mq2cp rabbitmq.conf mq3cp .erlang.cookie mq1cp .erlang.cookie mq2cp .erlang.cookie mq3
  6. 启动集群

    创建一个网络:

    docker network create mq-net

    运行命令

    docker run -d --net mq-net \-v ${PWD}/mq1/rabbitmq.conf:/etc/rabbitmq/rabbitmq.conf \-v ${PWD}/.erlang.cookie:/var/lib/rabbitmq/.erlang.cookie \-e RABBITMQ_DEFAULT_USER=itcast \-e RABBITMQ_DEFAULT_PASS=123321 \--name mq1 \--hostname mq1 \-p 8071:5672 \-p 8081:15672 \rabbitmq:3.8-management
    docker run -d --net mq-net \-v ${PWD}/mq2/rabbitmq.conf:/etc/rabbitmq/rabbitmq.conf \-v ${PWD}/.erlang.cookie:/var/lib/rabbitmq/.erlang.cookie \-e RABBITMQ_DEFAULT_USER=itcast \-e RABBITMQ_DEFAULT_PASS=123321 \--name mq2 \--hostname mq2 \-p 8072:5672 \-p 8082:15672 \rabbitmq:3.8-management
    docker run -d --net mq-net \-v ${PWD}/mq3/rabbitmq.conf:/etc/rabbitmq/rabbitmq.conf \-v ${PWD}/.erlang.cookie:/var/lib/rabbitmq/.erlang.cookie \-e RABBITMQ_DEFAULT_USER=itcast \-e RABBITMQ_DEFAULT_PASS=123321 \--name mq3 \--hostname mq3 \-p 8073:5672 \-p 8083:15672 \rabbitmq:3.8-management

    访问网页,搭建成功

    image-20230106151822486

    选择节点添加队列

    image-20230106151937822

三、镜像集群
  1. 特性

    • 交换机、队列、队列中的消息会在各个镜像节点之间同步备份
    • 创建队列的节点称为【主节点】,备份的节点称为【镜像节点】。
    • 一个队列的主节点可能是其他队列的镜像节点
    • 所有的原始操作都会先由主节点完成,然后同步给镜像节点
    • 主节点宕机后,镜像节点会成为新的主节点

image-20230106155143874

  1. 总结如下:

    • 镜像队列结构是一主多从(从就是镜像)
    • 镜像节点仅仅起到备份数据作用
    • 所有操作都是主节点完成,然后同步给镜像节点
    • 主宕机后,镜像节点会替代成新的主(如果在主从同步完成前,主就已经宕机,可能出现数据丢失)
    • 不具备负载均衡功能,因为所有操作都会有主节点完成(但是不同队列,其主节点可以不同,可以利用这个提高吞吐量)
  2. 镜像模式的配置

    镜像模式的配置有3种模式:

    ha-modeha-params效果
    准确模式exactly队列的副本量count集群中队列副本(主服务器和镜像服务器之和)的数量。count如果为1意味着单个副本:即队列主节点。count值为2表示2个副本:1个队列主和1个队列镜像。换句话说:count = 镜像数量 + 1。如果群集中的节点数少于count,则该队列将镜像到所有节点。如果有集群总数大于count+1,并且包含镜像的节点出现故障,则将在另一个节点上创建一个新的镜像。
    all(none)队列在群集中的所有节点之间进行镜像。队列将镜像到任何新加入的节点。镜像到所有节点将对所有群集节点施加额外的压力,包括网络I / O,磁盘I / O和磁盘空间使用情况。推荐使用exactly,设置副本数为(N / 2 +1)。
    nodesnode names指定队列创建到哪些节点,如果指定的节点全部不存在,则会出现异常。如果指定的节点在集群中存在,但是暂时不可用,会创建节点到当前客户端连接到的节点。

    这里我们以rabbitmqctl命令作为案例来讲解配置语法。

    语法示例:

  3. exactly模式

    rabbitmqctl set_policy ha-two "^two\." '{"ha-mode":"exactly","ha-params":2,"ha-sync-mode":"automatic"}'
    • rabbitmqctl set_policy:固定写法
    • ha-two:策略名称,自定义
    • "^two\.":匹配队列的正则表达式,符合命名规则的队列才生效,这里是任何以two.开头的队列名称
    • '{"ha-mode":"exactly","ha-params":2,"ha-sync-mode":"automatic"}': 策略内容
      • "ha-mode":"exactly":策略模式,此处是exactly模式,指定副本数量
      • "ha-params":2:策略参数,这里是2,就是副本数量为2,1主1镜像
      • "ha-sync-mode":"automatic":同步策略,默认是manual,即新加入的镜像节点不会同步旧的消息。如果设置为automatic,则新加入的镜像节点会把主节点中所有消息都同步,会带来额外的网络开销
  4. all模式

    rabbitmqctl set_policy ha-all "^all\." '{"ha-mode":"all"}'
    • ha-all:策略名称,自定义
    • "^all\.":匹配所有以all.开头的队列名
    • '{"ha-mode":"all"}':策略内容
      • "ha-mode":"all":策略模式,此处是all模式,即所有节点都会称为镜像节点
  5. nodes模式

    rabbitmqctl set_policy ha-nodes "^nodes\." '{"ha-mode":"nodes","ha-params":["rabbit@nodeA", "rabbit@nodeB"]}'
    • rabbitmqctl set_policy:固定写法
    • ha-nodes:策略名称,自定义
    • "^nodes\.":匹配队列的正则表达式,符合命名规则的队列才生效,这里是任何以nodes.开头的队列名称
    • '{"ha-mode":"nodes","ha-params":["rabbit@nodeA", "rabbit@nodeB"]}': 策略内容
      • "ha-mode":"nodes":策略模式,此处是nodes模式
      • "ha-params":["rabbit@mq1", "rabbit@mq2"]:策略参数,这里指定副本所在节点名称
  6. 测试

    我们使用exactly模式的镜像,因为集群节点数量为3,因此镜像数量就设置为2.

    运行下面的命令:

    docker exec -it mq1 rabbitmqctl set_policy ha-two "^two\." '{"ha-mode":"exactly","ha-params":2,"ha-sync-mode":"automatic"}'

    下面,我们创建一个新的队列:

    image-20230106210057744

四、仲裁队列Quorum
  1. Quorum:仲裁,3.8版本之后出现的功能,约定大于配置,目的在于取代镜像集群

  2. 默认count值为5,即 1主4从

  3. 添加仲裁队列

    在任意控制台添加一个队列,一定要选择队列类型为Quorum类型。

    image-20230106210345390

    在任意控制台查看队列:

    image-20230106210354022

    可以看到,仲裁队列的 + 2字样。代表这个队列有2个镜像节点。

    因为仲裁队列默认的镜像数为5。如果你的集群有7个节点,那么镜像数肯定是5;而我们集群只有3个节点,因此镜像数量就是3.

五、集群扩容

加入集群

1)启动一个新的MQ容器:

docker run -d --net mq-net \-v ${PWD}/.erlang.cookie:/var/lib/rabbitmq/.erlang.cookie \-e RABBITMQ_DEFAULT_USER=itcast \-e RABBITMQ_DEFAULT_PASS=123321 \--name mq4 \--hostname mq5 \-p 8074:15672 \-p 8084:15672 \rabbitmq:3.8-management

2)进入容器控制台:

docker exec -it mq4 bash

3)停止mq进程

rabbitmqctl stop_app

4)重置RabbitMQ中的数据:

rabbitmqctl reset

5)加入mq1:

rabbitmqctl join_cluster rabbit@mq1

6)再次启动mq进程

rabbitmqctl start_app

image-20230106210413478

增加仲裁队列副本

我们先查看下quorum.queue这个队列目前的副本情况,进入mq1容器:

docker exec -it mq1 bash

执行命令:

rabbitmq-queues quorum_status "quorum.queue"

结果:

image-20230106210420706

现在,我们让mq4也加入进来:

rabbitmq-queues add_member "quorum.queue" "rabbit@mq4"

结果:

image-20230106210429215

再次查看:

rabbitmq-queues quorum_status "quorum.queue"

image-20230106210435237

查看控制台,发现quorum.queue的镜像数量也从原来的 +2 变成了 +3:

image-20230106210441936


十五、分布式文件系统 MiNIO

1、简介

  1. 简介:

    • 文件系统操作系统用于明确存储设备或分区上的文件的方法和数据结构,如 FAT16、NTFS、ext4、APFS 等。
    • 分布式文件系统:也叫“网络文件系统”,是一种允许文件透过网络在多台主机上分享的文件系统,多台文件存储服务器组成集群共同对外提供服务。

image-20230120104030443

  1. 应用实例:

    • 云服务器厂商的 OSS 虚拟存储技术
    • 单独微服务组件实现图片上传下载

2、MinIO

开源产品

英文官网:https://min.io|中文官网:https://www.minio.org.cn/

  1. MinIO 是什么?

    ​ MinIO 是一个非常轻量的服务,可以很简单的和其他应用的结合使用,它兼容亚马逊 S3 云存储服务接口(亚马逊云的 S3 API 接口协议是在全球范围内达到共识的对象存储协议,是世界范围内认可的标准),非常适合于存储大容量非结构化的数据,例如图片、视频、日志文件、备份数据和容器/虚拟机镜像等。我国的企业通常使用阿里云、腾讯云提供的 OSS 云端存储服务,不过对于一些敏感信息,可以“自建 OSS ”。

    ​ 它一大特点就是轻量,使用简单,功能强大,支持各种平台,单个文件最大 5TB,兼容 Amazon S3接口,提供了 Java、python、GO等多版本SDK支持。

  2. 特点:

    • Golang编写
    • 去中心化:MinIO集群采用去中心化共享架构,每个结点是对等关系,通过 Nginx 可实现负载均衡访问。
    • 数据保护:使用纠错码 erasure code校验和 checksum保护数据免受硬件故障和数据损坏,即使丢失一半数量(N/2)的硬盘,仍然可以恢复数据。
    • 高可用:多节点组成的分布式minio可保证服务的高可用(分布式 Minio 只要有 N/2 节点在线,数据就是安全的,不过需要至少有 N/2+1 个节点才能创建新的对象)
    • 一致性保障:所有的 IO 操作中都严格遵循 read-after-writelist-after-write 一致性模型

image-20230121120931117

  1. 纠错码 erasure code 简介

    ​ 纠删码是一种恢复丢失和损坏数据的数学算法,传输过程中发生错误后能在收端自行发现或纠正的码。为使一种码具有检错或纠错能力,须对原码字增加多余的码元

    ​ Minio 将数据分块冗余的分散存储在各各节点的磁盘上,所有的可用磁盘组成一个集合,上图由8块硬盘组成一个集合,当上传一个文件时会通过纠删码算法计算对文件进行分块存储,除了将文件本身分成4个数据块,还会生成4个校验块,数据块和校验块会分散的存储在这 8 块硬盘上。

    ​ 使用纠删码的好处是即便丢失一半数量(N/2)的硬盘,仍然可以恢复数据。在上图中,当丢失3个硬盘时,依旧可读可写;当丢失4个硬盘时,只能读不能写;当丢失数量大于一半即 4 个硬盘时,数据无法恢复

  2. 纠错码 erasure code 工作流程

    当数据对象在MinIO集群中进行存储时,先进行纠删分片,后打散存储在各硬盘上。具体为:

    1. MinIO自动在集群内生成若干纠删组,每个纠删组包含一组硬盘,其数量通常为4至16块;
    2. 对数据对象进行分片,默认策略是得到相同数量的数据分片和校验分片;
    3. 而后通过哈希算法计算出该数据对象对应的纠删组,并将数据和校验分片存储至纠删组内的硬盘上。

image-20230122193327957

  1. MinIO 恢复过程:

    删除一个目录,稍等片刻删除的目录自动恢复。

  2. 一些思想:

    • 桶内可以创建子目录
    • 同一个桶内,对象名不能重复(相同则覆盖)
    • 纠错码至少拥有 4 份存储空间
  3. Docker安装

    • 不使用纠错码:存储的文件在硬盘中不会被拆分,还是文件原来的模样。
    docker run \-p 9000:9000 \-p 9090:9090 \-d --restart=always \-e "MINIO_ACCESS_KEY=minioadmin" \-e "MINIO_SECRET_KEY=minioadmin" \-v /home/minio/data:/data \-v /home/minio/config:/root/.minio \--name minio  \minio/minio:latest \server /data --console-address ":9090" -address ":9000"

    端口9000/9090,账号密码默认minioadmin

    • 使用纠错码(8份):存储的文件被拆分,平均存储在 8 份硬盘。

      实测存储 274KB,占用硬盘:67*8+4*16=600KB(其中 4*16 表示目录所占用的存储,即最小块 4KB * 16),当然这里只是大致估算,并不代表最终准确值,有印象即可。

    docker run -d \-p 9001:9001 \-p 9091:9091 \-e "MINIO_ACCESS_KEY=minioadmin" \-e "MINIO_SECRET_KEY=minioadmin" \-v /home/minio/data1:/data1 \-v /home/minio/data2:/data2 \-v /home/minio/data3:/data3 \-v /home/minio/data4:/data4 \-v /home/minio/data5:/data5 \-v /home/minio/data6:/data6 \-v /home/minio/data7:/data7 \-v /home/minio/data8:/data8 \-v /home/minio/config:/root/.minio \--name minio1 \minio/minio server /data1 /data2 /data3 /data4 /data5 /data6 /data7 /data8 \--console-address ":9091" -address ":9001"
    tree -h \/home/minio/data1 \/home/minio/data2 \/home/minio/data3 \/home/minio/data4 \/home/minio/data5 \/home/minio/data6 \/home/minio/data7 \/home/minio/data8

image-20230122112257190

  1. 创建新用户

image-20230121141141179

设置账号密码及权限

image-20230121141053726

  1. 创建新群组

image-20230121141250751

  1. 创建AccessKeySecretKey

为用户创建AccessKeySecretKey(相当于受限的账号密码),用以在其他客户端中声明使用。

image-20230121142311156

image-20230121141532870

image-20230121164327359

下载保存,备用

image-20230121141614417

  1. 创建Buckets

MinIO 使用来组织对象,桶类似于文件系统中的文件夹或目录,其中每个桶可以容纳任意数量的对象。

image-20230121142719169

赋予桶 public 权限、上传文件,然后可以通过网址来访问文件,如:

  • http:// 域名:端口 / 桶名 / 文件名
  • http://127.0.0.1:9000/testbucket/1.jpeg

3、整合Java

MinIO官方提供了许多语言的 SDK

  1. 引入依赖

    <dependency>    <groupId>io.miniogroupId>    <artifactId>minioartifactId>    <version>8.5.1version>dependency>
  2. 上传文件

    可将 Minioclient 配置成 Bean 对象

    创建 MinioClient 对象需要提供accessKeysecretKey(由具有读写权限的账户创建)

    // 创建 MinioClient 对象MinioClient minioClient =        MinioClient.builder()                .endpoint("http://175.178.20.191:9000")                .credentials("HlaV03Fck1XuwE4X", "Sp5CeqEVtasxcgkJ5ZhPJPsFoRknUlSS")                .build();// 如果桶不存在则创建String bucket = "testbucket";if (!minioClient.bucketExists(BucketExistsArgs.builder().bucket(bucket).build())) {    minioClient.makeBucket(MakeBucketArgs.builder().bucket(bucket).build());}// 声明上传文件(可定义多层文件夹)UploadObjectArgs uploadObject = UploadObjectArgs.builder()        .bucket(bucket)        .object("finename/credentials.json")        .filename("credentials.json")        .build();// 正式上传文件minioClient.uploadObject(uploadObject);System.out.println("上传成功~");
  3. 查询文件及下载

    GetObjectArgs getObject = GetObjectArgs.builder()        .bucket(bucket)        .object("1.jpeg")        .build();// 判断文件是否存在及创建输出流InputStream      input = minioClient.getObject(getObject);FileOutputStream output = new FileOutputStream(getObject.object());// 存在则下载IOUtils.copy(input, output);// 关闭输出流output.close();System.out.println("下载成功");

    tips:输入流与输出流之间,可以使用 Spring 工具类 IOUtils 进行“快捷拷贝

    IOUtils.copy( source , target );
  4. 删除文件

    minioClient.removeObject(  RemoveObjectArgs.builder().bucket(bucket).object("credentials.json").build());

4、实战案例

编写:通用的 Service 层文件传输接口

5、集群部署

暂时搭建失败!

  1. 简介:

    ​ 分布式 MinIO 能够将多块硬盘(可以不在同一台机器上)组成一个对象存储 服务,分布式Minio里所有的节点必须拥有相同的access秘钥和secret秘钥才能建立联接,即accessKeysecretKey一样。

    ​ 分布式MinIO可以通过 Docker Compose 或者 Swarm mode进行部署。这两者之间的主要区别是 Compose 只实现单主机多容器部署(测试环境),而 Swarm 模式能实现多主机多容器部署(生产环境)。

  2. 集群原理:

    ​ MinIO分布式集群是指在多个服务器节点均部署MinIO服务,并将其组建为分布式存储集群,对外提供标准S3接口以进行统一访问。MinIO采用去中心化无共享架构,各节点间为对等关系,连接至任一节点均可实现对集群的访问,我们可以使用 Nginx 对节点进行轮询。

image-20230122185330124

  1. 实战(搭建失败):

    2台机器、4个硬盘,硬盘序号一致

    175.178.20.191 minio147.94.55.73 minio2

    第一台机器

    docker run -d \-p 9000:9000 \-p 9090:9090 \--net=host \-e "MINIO_ROOT_USER=minioadmin" \-e "MINIO_ROOT_PASSWORD=minioadmin" \-v /home/minio/data1:/data1 \-v /home/minio/data2:/data2 \-v /home/minio/data3:/data3 \-v /home/minio/data4:/data4 \-v /home/minio/config:/root/.minio \--name minio \minio/minio \server http://minio{1...2}/data{1...4} \--console-address ":9090" -address ":9000"

    第二台机器

    docker run -d \-p 9001:9001 \-p 9091:9091 \--net=host \-e "MINIO_ROOT_USER=minioadmin" \-e "MINIO_ROOT_PASSWORD=minioadmin" \-v /home/minio/data1:/data1 \-v /home/minio/data2:/data2 \-v /home/minio/config:/root/.minio \--name minio2 \minio/minio \server http://minio{1...2}/data{1...4} \--console-address ":9091" -address ":9001"

    测试

    docker rm -f $(docker ps -a)
    docker  run -d --name minio \-p 9000:9000  \-p 9001:9001  \--restart=always  --net=host \-e MINIO_ACCESS_KEY=minio \-e d=minio123 \-v /data/config:/root/.minio \-v /data/data1:/data1 \-v /data/data2:/data2 \-v /data/data3:/data3 \-v /data/data4:/data4 \minio/minio server http://minio{1...2}/data{1...4} \--console-address ":9001"

来源地址:https://blog.csdn.net/qq_35760825/article/details/128753753

--结束END--

本文标题: SpringCloud笔记

本文链接: https://lsjlt.com/news/378621.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • SpringCloud笔记
    2023年最新笔记,全文约 3 万字,蕴含 Spring Cloud 常用组件 Nacos、OpenFeign、Seata、Sentinel 等 〇、简介 什么是Spring Cloud? ​ Spring Cloud是一系列框架...
    99+
    2023-08-23
    spring spring cloud java
  • SpringCloud远程服务调用实战笔记
    笔记 在微服务中,若想要使用远程调用,需要引入spring-cloud-starter-openfeign(在使用注册中心的环境下) <dependency> &...
    99+
    2024-04-02
  • SpringCloud学习笔记之Feign远程调用
    目录前言1.Feign替代RestTemplate1.1 引入依赖1.2 添加注释1.3 编写Feign的客户端1.4 测试1.5 总结2.自定义配置2.1 配置文件方式2.2 Ja...
    99+
    2024-04-02
  • SpringCloud学习笔记之SpringCloud搭建父工程的过程图解
    目录SpringCloud和SpringBoot版本选择更详细的版本选择相关技术选型创建工程创建父工程新建maven工程配置父工程的pom文件SpringCloud是分布式微服务架构...
    99+
    2024-04-02
  • SpringCloud学习笔记之OpenFeign进行服务调用
    目录前言1、OpenFeign1.1、OpenFeign概述1.2、OpenFeign的使用步骤1.3、超时控制1.3.1、是什么?1.3.2、修改代码设置超时错误1.3.3、进行超...
    99+
    2024-04-02
  • SpringCloud笔记(Hoxton)Netflix之Ribbon负载均衡示例代码
    目录Ribbon使用负载均衡代码示例注册中心Provider接口实现Consumer添加依赖测试Ribbon使用 Ribbon是管理HTTP和TCP服务客户端的负载均衡器,Ribbo...
    99+
    2024-04-02
  • mysql笔记-
    用单表接近一千万数据(四列:int,两个varchar,日期时间)测,发现几个效率几乎一致 count(0)=count(1)=count(数字)=count(*)>count(primary key)>count(column...
    99+
    2021-01-21
    mysql笔记-
  • redis笔记-
    前言 为了避免单点故障,我们需要将数据复制多份部署在多台不同的服务器上,即使有一台服务器出现故障其他服务器依然可以继续提供服务 作用: 数据备份 扩展读性能(读写分离) 复制方式: 全量复制 部分复制   实现方式   1、一主二...
    99+
    2021-09-21
    redis笔记-
  • Redis 笔记
    Redis常用管理命令 # dbsize 返回当前数据库 key 的数量。 # info 返回当前 redis 服务器状态和一些统计信息。 # monitor 实时监听并返回redis服务器接收到的所有请求信息。 # shutd...
    99+
    2020-04-14
    Redis 笔记
  • redis笔记
    //redis类型介绍 //获取数据 $lotterylRedis = Redis::getInstance()->redisGet($key); //有效期时间 $key = "Kaijang:lottery:frequency:sim...
    99+
    2022-02-07
    redis笔记
  • MySQL笔记
    目录著名数据库(了解)概念组成(了解即可)注意点DDL操作操作数据库数据类型(列类型)操作表DML(Data Manipulation Language)DCL(Data Control Language)DQL(Data Que...
    99+
    2019-03-29
    MySQL笔记
  • PostgreSQL笔记
    一.PostgreSQL简介 PostgreSQL数据库一种关系型数据库。是当前世界上最先进的开源关系型数据库。 PostgreSQL使用的是一种客户端/服务器的模式。一次PostgreSQL会话由以下相关进程组成: 1.post...
    99+
    2021-03-05
    PostgreSQL笔记
  • sysbench0.5笔记
    安装方法:下载地址:https://github.com/akopytov/sysbench yum install automake libtool -yunzip sysbench-0.5.z...
    99+
    2024-04-02
  • memcached笔记
        趁周末宅在家有时间,对memcached做个备忘笔记吧,总结一下,也给大家提供一个参考。有误解的地方,也请大家给我指正。1、Memcached:一套利用系统内存进行数据缓存的软件...
    99+
    2024-04-02
  • oracle.Performance.Tuning笔记
    oracle.Performan...
    99+
    2024-04-02
  • VLAN笔记
    虚拟VLAN 什么是VLANVLAN的作用VLAN的优缺点VLAN的配置方法VLAN有哪些接口模式access与trunk接口的区别Hybrid接口拓扑实验 ensp Cisco H3C​ 什么是VLAN VLAN(V...
    99+
    2023-09-26
    tcp/ip
  • nginx笔记
    Nginx 是一款轻量级的 Web 服务器、反向代理服务器,它内存占用少、启动速度快、并发能力强,在互联网项目中有广泛应用。 文章目录 一、简介二、常用配置1、listen2、serv...
    99+
    2023-09-05
    nginx 服务器 运维
  • Zookeeper笔记
    为什么要使用Zookeeper dubbo需要一个注册中心,而Zookeeper是我们在使用Dubbo是官方推荐的注册中心 Zookeeper介绍 Zookeeper的集群机制 Zookeepe...
    99+
    2023-09-08
    zookeeper java
  • Python笔记
    列表[List] 元组(truple) 字典{dict} # 列表中的每个元素都分配一个数字 - 它的位置,或索引,第一个索引是0,第二个索引是1,依此类推 # list comprehension [i for i in range...
    99+
    2023-01-31
    笔记 Python
  • django笔记
    装饰器:require_http_method() 当然你可以在视图函数内丢弃那些期望之外的请求(比如上例中的POST /report/1234/), 但更简单的做法是使用Django预置的require_http_methods(met...
    99+
    2023-01-30
    笔记 django
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作