Python 官方文档:入门教程 => 点击学习
这篇文章主要介绍“如何使用python求解迷宫问题”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“如何使用Python求解迷宫问题”文章能帮助大家解决问题。前言在迷宫问题中,给定入口和出口,要求找到路
这篇文章主要介绍“如何使用python求解迷宫问题”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“如何使用Python求解迷宫问题”文章能帮助大家解决问题。
在迷宫问题中,给定入口和出口,要求找到路径。本文将讨论三种求解方法,递归求解、回溯求解和队列求解。
在介绍具体算法之前,先考虑将迷宫数字化。这里将迷宫用一个二维的list存储(即list嵌套在list里),将不可到达的位置用1表示,可到达的位置用0表示,并将已经到过的位置用2表示。
递归求解的基本思路是:
每个时刻总有一个当前位置,开始时这个位置是迷宫人口。
如果当前位置就是出口,问题已解决。
否则,如果从当前位置己无路可走,当前的探查失败,回退一步。
取一个可行相邻位置用同样方式探查,如果从那里可以找到通往出口的路径,那么从当前位置到出口的路径也就找到了。
在整个计算开始时,把迷宫的人口(序对)作为检查的当前位置,算法过程就是:
mark当前位置。
检查当前位置是否为出口,如果是则成功结束。
逐个检查当前位置的四邻是否可以通达出口(递归调用自身)。
如果对四邻的探索都失败,报告失败。
dirs=[(0,1),(1,0),(0,-1),(-1,0)] #当前位置四个方向的偏移量path=[] #存找到的路径 def mark(maze,pos): #给迷宫maze的位置pos标"2"表示“倒过了” maze[pos[0]][pos[1]]=2 def passable(maze,pos): #检查迷宫maze的位置pos是否可通行 return maze[pos[0]][pos[1]]==0 def find_path(maze,pos,end): mark(maze,pos) if pos==end: print(pos,end=" ") #已到达出口,输出这个位置。成功结束 path.append(pos) return True for i in range(4): #否则按四个方向顺序检查 nextp=pos[0]+dirs[i][0],pos[1]+dirs[i][1] #考虑下一个可能方向 if passable(maze,nextp): #不可行的相邻位置不管 if find_path(maze,nextp,end):#如果从nextp可达出口,输出这个位置,成功结束 print(pos,end=" ") path.append(pos) return True return False def see_path(maze,path): #使寻找到的路径可视化 for i,p in enumerate(path): if i==0: maze[p[0]][p[1]] ="E" elif i==len(path)-1: maze[p[0]][p[1]]="S" else: maze[p[0]][p[1]] =3 print("\n") for r in maze: for c in r: if c==3: print('\033[0;31m'+"*"+" "+'\033[0m',end="") elif c=="S" or c=="E": print('\033[0;34m'+c+" " + '\033[0m', end="") elif c==2: print('\033[0;32m'+"#"+" "+'\033[0m',end="") elif c==1: print('\033[0;;40m'+" "*2+'\033[0m',end="") else: print(" "*2,end="") print() if __name__ == '__main__': maze=[[1,1,1,1,1,1,1,1,1,1,1,1,1,1],\ [1,0,0,0,1,1,0,0,0,1,0,0,0,1],\ [1,0,1,0,0,0,0,1,0,1,0,1,0,1],\ [1,0,1,0,1,1,1,1,0,1,0,1,0,1],\ [1,0,1,0,0,0,0,0,0,1,1,1,0,1],\ [1,0,1,1,1,1,1,1,1,1,0,0,0,1],\ [1,0,1,0,0,0,0,0,0,0,0,1,0,1],\ [1,0,0,0,1,1,1,0,1,0,1,1,0,1],\ [1,0,1,0,1,0,1,0,1,0,1,0,0,1],\ [1,0,1,0,1,0,1,0,1,1,1,1,0,1],\ [1,0,1,0,0,0,1,0,0,1,0,0,0,1],\ [1,1,1,1,1,1,1,1,1,1,1,1,1,1]] start=(1,1) end=(10,12) find_path(maze,start,end) see_path(maze,path)
代码中see_path函数可以在控制台直观打印出找到的路径,打印结果如下:
S是入口位置 ,E是出口位置,*代表找到的路径,#代表探索过的路径。
在回溯解法中,主要是用栈来存储可以探索的位置。利用栈后进先出的特点,在一条分路上探索失败时,回到最近一次存储的可探索位置。这是一种深度优先搜索的方法。
def maze_solver(maze,start,end): if start==end: print(start) return st=SStack() mark(maze,start) st.push((start,0)) #入口和方向0的序对入栈 while not st.is_empty(): #走不通时回退 pos,nxt=st.pop() #取栈顶及其检查方向 for i in range(nxt,4): #依次检查未检查方向,算出下一位置 nextp = pos[0] + dirs[i][0], pos[1] + dirs[i][1] if nextp==end: print_path(end,pos,st) #到达出口,打印位置 return if passable(maze,nextp): #遇到未探索的新位置 st.push((pos,i+1)) #原位置和下一方向入栈 mark(maze,nextp) st.push((nextp,0)) #新位置入栈 break #退出内层循环,下次迭代将以新栈顶作为当前位置继续 print("找不到路径")
队列求解算法中,以队列存储可以探索的位置。利用队列先进先出的特点,实现在每个分支上同时进行搜索路径,直到找到出口。这是一种广度优先搜索的方法。
def maze_solver_queue(maze,start,end): path.append(start) if start==end: print("找到路径") return qu=SQueue() mark(maze,start) qu.enqueue(start) #start位置入队 while not qu.is_empty(): #还有候选位置 pos=qu.dequeue() #取出下一位置 for i in range(4): #检查每个方向 nextp = pos[0] + dirs[i][0], pos[1] + dirs[i][1] if passable(maze,nextp): #找到新的探索方向 if nextp==end: #是出口,成功 print("找到路径") path.append(end) return mark(maze,nextp) qu.enqueue(nextp) #新位置入队 path.append(nextp) print("未找到路径")
但队列求解方法,不能直接得出找到的具体路径,要得到找到的路径还需要其他存储结构(如链表)。
关于“如何使用python求解迷宫问题”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注编程网Python频道,小编每天都会为大家更新不同的知识点。
--结束END--
本文标题: 如何使用python求解迷宫问题
本文链接: https://lsjlt.com/news/325010.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-03-01
2024-03-01
2024-03-01
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0