Python 官方文档:入门教程 => 点击学习
目录构思绘制迷宫走出迷宫完整代码更大的挑战关于坐标系设置周末在家,儿子闹着要玩游戏,让玩吧,不利于健康,不让玩吧,扛不住他折腾,于是想,不如一起搞个小游戏玩玩! 之前给他编过猜数字
周末在家,儿子闹着要玩游戏,让玩吧,不利于健康,不让玩吧,扛不住他折腾,于是想,不如一起搞个小游戏玩玩!
之前给他编过猜数字 和 掷骰子 游戏,现在已经没有吸引力了,就对他说:“我们来玩个迷宫游戏吧。”
果不其然,有了兴趣,于是和他一起设计实现起来,现在一起看看我们是怎么做的吧,说不定也能成为一个陪娃神器~
先一睹为快:
迷宫游戏,相对比较简单,设置好地图,然后用递归算法来寻找出口,并将过程显示出来,增强趣味性。
不如想到需要让孩子一起参与,选择了绘图程序 Turtle作为实现工具。
这样就可以先在纸上绘制一个迷宫,然后编写成代码,让 Turtle 去绘制,因为孩子用笔画过,所以在实现代码时,他可以充分参与,不仅是为了得到最终的游戏,而且更是享受制作过程,开发编程思维,说不定省了一笔不小的少儿编程费用哈哈哈~
首先和孩子一起制作迷宫,在纸上画出 5 X 5 的小格子,然后,让他在格子中画一条通路,像这样:
绘制迷宫
然后,将这幅图转化为一个迷宫矩阵,用 1 表示墙,用 空格 表示通路,需要注意的是网格每条边线都是墙,连通部分的墙需要打通,成为路。
这时可以和他一起来实现,比如让他用自己的积木等摆设一个迷宫,而我们来做数字化转化,最后转化成的结果是:
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
如果孩子看不清楚,可以将路径表示出来 哈哈哈:
1 1 1 1 1 1 1 1 1 1 1
->_____ 1 _____ 1 1 1
1 1 1 | 1 | 1 | 1 1 1
1 ____| 1 | 1 |___ 1
1 | 1 1 1 | 1 1 1 | 1
1 |____ 1 | 1 ____| 1
1 1 1 | 1 | 1 | 1 1 1
1 ____| 1 | 1 |____ 1
1 | 1 1 1 | 1 1 1 | 1
1 |_______| 1 1 1 | 1
1 1 1 1 1 1 1 1 1\|/1
做完了迷宫数字化,就需要将迷宫在电脑上表示出来了。
之所以选择 Turtle,就是因为它会像用笔做图画一样,可以让孩子充分参与。
找出一张纸,用刚才整理的迷宫数字化结果作为指导绘图,遇到 1 就画一个小方格,遇到 空格 就跳过,可以和孩子一起画,主要是让他体会过程中的规律。
好了,趁他绘制的时候,我们来实现绘制代码吧。
首先需要知道 Turtle 的一些特点:
实现的方式和孩子用笔画是一样的,从第一个格子画起:
效果
下面看看代码:
def drawCenteredBox(self, x, y, color):
self.t.up()
self.t.Goto(x - 0.5, y - 0.5)
self.t.color('black', color)
self.t.setheading(90)
self.t.down()
self.t.begin_fill()
for _ in range(4):
self.t.forward(1)
self.t.right(90)
self.t.end_fill()
update()
看看这个过程,是不是和孩子手工绘制一模一样!
现在遍历整个迷宫矩阵,不断调用 drawCenteredBox 就可以绘制出迷宫了:
效果
代码如下:
def drawMaze(self):
for y in range(self.rowsInMaze):
for x in range(self.columnsInMaze):
if self.mazelist[y][x] == 1:
self.drawCenteredBox(x + self.xTranslate, -y + self.yTranslate, 'tan')
rowsInMaze、columnsInMaze 表示迷宫矩阵的行和列
tan 为沙漠迷彩色的颜色名称
迷宫绘制好了,如何走出出呢?
可以先问问孩子,让他想想办法。
实现思路也很简单,就是超一个方向走,如果是墙,就换一个方向,如果不是墙,就继续走下去,如此往复……
但是,这里可以和孩子做个预演,比如迷宫很大的时候,记不住走过哪些路怎么办?
探索了一条路,走不通,返回后,不记得走过哪些路,这是非常危险的事情,如果有种方法可以记住走过的路,就好了。
这里我给儿子讲了一下忒修斯大战牛头怪[3]的古希腊神话传说,启发他想出好的方法。
如何用代码实现呢,只要在迷宫矩阵种,标记一下走过的路就可以了:
PART_OF_PATH = 0
OBSTACLE = 1
TRIED = 3
DEAD_END = 4
def search(maze, startRow, startColumn): # 从指定的点开始搜索
if maze[startRow][startColumn] == OBSTACLE:
return False
if maze[startRow][startColumn] == TRIED:
return False
if maze.isExit(startRow, startColumn):
maze.updatePosition(startRow, startColumn, PART_OF_PATH)
return True
maze.updatePosition(startRow, startColumn, TRIED)
found = search(maze, startRow-1, startColumn) or \
search(maze, startRow, startColumn-1) or \
search(maze, startRow+1, startColumn) or \
search(maze, startRow, startColumn+1)
if found:
maze.updatePosition(startRow, startColumn, PART_OF_PATH)
else:
maze.updatePosition(startRow, startColumn, DEAD_END)
return found
因为使用了递归方式,所以代码比较简短,我们来看看:
这里还需要看看 updatePosition 方法的实现:
def updatePosition(self, row, col, val=None):
if val:
self.mazelist[row][col] = val
self.moveTurtle(col, row)
if val == PART_OF_PATH:
color = 'green'
elif val == OBSTACLE:
color = 'red'
elif val == TRIED:
color = 'black'
elif val == DEAD_END:
color = 'red'
else:
color = None
if color:
self.dropBreadcrumb(color)
def moveTurtle(self, x, y):
self.t.up()
self.t.setheading(self.t.towards(x+self.xTranslate, -y+self.yTranslate))
self.t.goto(x+self.xTranslate, -y+self.yTranslate)
def dropBreadcrumb(self, color):
self.t.dot(color)
看一下效果:
走出迷宫
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: 闲欢
"""
import pygame, random, sys, time
pygame.init()
screen = pygame.display.set_mode([600, 400])
screen.fill((255, 255, 255))
# 圆的半径
radius = [0] * 10
# 圆的半径增量
circleDelt = [0] * 10
# 圆是否存在,False代表该索引值下的圆不存在,True代表存在
circleExists = [False] * 10
# 圆的坐标x轴
circleX = [0] * 10
# 圆的坐标y轴
circleY = [0] * 10
# 颜色RGB值
RGBx = [0] * 10
RGBy = [0] * 10
RGBz = [0] * 10
while True:
# 停顿0.1秒
time.sleep(0.1)
for event in pygame.event.get():
# 鼠标按下
if event.type == pygame.MOUSEBUTTONDOWN:
# 获取圆不存在的索引值
num = circleExists.index(False)
# 将该索引值的圆设置为存在
circleExists[num] = True
# 圆的半径设置为0
radius[num] = 0
# 获取鼠标坐标
circleX[num], circleY[num] = pygame.mouse.get_pos()
# 随机获取颜色值
RGBx[num] = random.randint(0, 255)
RGBy[num] = random.randint(0, 255)
RGBz[num] = random.randint(0, 255)
# 画圆
pygame.draw.circle(screen, pygame.Color(RGBx[num], RGBy[num], RGBz[num]),
(circleX[num], circleY[num]), radius[num], 1)
if event.type == pygame.QUIT:
pygame.quit()
sys.exit()
for i in range(10):
# 圆不存在则跳过循环
if not circleExists[i]:
pass
else:
# 随机圆的大小
if radius[i] < random.randint(10, 50):
# 圆的随机半径增量
circleDelt[i] = random.randint(0, 5)
radius[i] += circleDelt[i]
# 画圆
pygame.draw.circle(screen, pygame.Color(RGBx[i], RGBy[i], RGBz[i]),
(circleX[i], circleY[i]), radius[i], 1)
else:
# 若圆已达到最大,这将该索引值的圆设置为不存在
circleExists[i] = False
pygame.display.update()
当孩子看到自己做的迷宫,被小乌龟走出来时,别提有多开心了。
不过,没多久,他就想要更复杂的迷宫,有多条分支的迷宫。
显然有手工的方式有点困难,而且无趣。需要让程序自动生成迷宫。
分析代码之后,将其中的迷宫类移植过来,生成的结果之间导入到笔者写的迷宫类中,将迷宫规模设置为 100 X 100,震撼了:
巨型迷宫
看着小乌龟在巨大的迷宫中蹒跚,还有种莫名的悲伤~
有了有了迷宫生成工具,就很多好玩的了:
如何让乌龟更快的找到出路
如何让乌龟随机出现在迷宫中
如何动态设置迷宫的出入口
……
对这些问题,我们一一做了实现,孩子在整个过程中,积极参与,时不时因为好的想法而手舞足蹈,不亦乐乎……
前面留了几个坑,是关于 Turtle 坐标系的,这里统一做下说明。
第一个问题,坐标单位
默认情况下,Turtle 的坐标单位是一个像素,如果要放大显示的华,需要计算出来我们使用的单元相当于多少个像素,然后每次计算坐标时都得考虑到这个值,当现实区域发生变化时还得调整这个数值,非常麻烦,而且容易出错。
所以 Turtle 提供了一个设置我们自己坐标单位的方法 setworldcoordinates,它接受四个参数,分别是坐标系中,左下角的点 x坐标,y坐标,和 右上角的 x坐标、y坐标。
如果将左下角设置为 (-5, -5),右上角设置为 (5, 5),那么 Turtle 就会将坐标原点设置在屏幕中心,并将屏幕分割成 10 X 10 的方块,每个块的边长,相当于一个坐标单位,也就是说,当我们说将笔尖移动到 (3, 4) 这个坐标点时,Turtle 就会从屏幕中心向右移动三个单位,再向上移动4个单位。
这样就非常方便了,无论屏幕大小如何,像素大小如何,Turtle 都会按照我们的指令,做出正确的响应。
另一个问题是 两个偏移量 xTranslate 和 yTranslate
分别是这样计算得到的:
self.xTranslate = -columnsInMaze/2
self.yTranslate = rowsInMaze/2
存在的意义就是从行和列值中,转化为 Turtle 坐标系的值,比如行列表示法中,(0, 0) 点,在我们变换后的 10 X 10 的坐标系中,对应的坐标点是 (-5, 5)。
因为我们查找数据时用行列表示法比较方便,但在坐标系中,以原点为基准表示比较方便。
--结束END--
本文标题: 详解如何利用Python绘制迷宫小游戏
本文链接: https://lsjlt.com/news/139932.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-03-01
2024-03-01
2024-03-01
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0