这篇文章主要介绍DataFrame怎么用,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!一、概述: DataFrame是一个
这篇文章主要介绍DataFrame怎么用,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
DataFrame是一个分布式数据集,可以理解为关系型数据库一张表,由字段和字段类型、字段值按列组织,且支持四种语言,在Scala api中可以理解为: FataFrame=Dataset[ROW]
注:DataFrame产生于V1.3之后,在V1.3前为SchemaRDD,在V1.6以后又添加了Dataset
概念: 两个都是分布式容器,DF理解是一个表格除了RDD数据以外还有Schema,也支持复杂数据类型(map..)API: DataFrame提供的API比RDD丰富 支持map filter flatMap .....数据结构:RDD知道类型没有结构, DF提供Schema信息 有利于优化,性能上好底层:基于运行环境不一样,RDD开发的Java/Scala API运行底层环境JVM, DF在sparksql中转换成逻辑执行计划(locaical Plan)和物理执行计划(Physical Plan)中间自身优化功能,性能差异大
[hadoop@hadoop001 bin]$./spark-shell --master local[2] --jars ~/software/mysql-connector-java-5.1.34-bin.jar
-- 读取json文件
scala>val df = spark.read.json("file:///home/hadoop/data/people.json")
18/09/02 11:47:20 WARN ObjectStore: Failed to get database global_temp, returning NoSuchObjectException
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
-- 打印schema信息
scala> df.printSchema
root |-- age: long (nullable = true) -- 字段 类型 允许为空 |-- name: string (nullable = true)
-- 打印字段内容
scala> df.show
+----+-------+| age| name|+----+-------+|null|Michael|| 30| Andy|| 19| Justin|+----+-------+
-- 打印查询字段
scala> df.select("name").show
+-------+| name|+-------+|Michael| | Andy|| Justin|+-------+
-- 单引号,存在隐式转换
scala> df.select('name).show
+-------+| name|+-------+|Michael|| Andy|| Justin|+-------+
-- 双引号隐式转换不识别
scala> df.select("name).show
<console>:1: error: unclosed string literal
df.select("name).show
^
-- 年龄计算,NULL无法计算
scala> df.select($"name",$"age" + 1).show
+-------+---------+| name|(age + 1)|+-------+---------+|Michael| null|| Andy| 31|| Justin| 20|+-------+---------+
-- 年龄过滤
scala> df.filter($"age" > 21).show
+---+----+|age|name|+---+----+| 30|Andy|+---+----+
-- 年龄分组 汇总
scala> df.groupBy("age").count.show
+----+-----+ | age|count|+----+-----+| 19| 1||null| 1|| 30| 1|+----+-----+
-- 创建一个临时视图
scala> df.createOrReplaceTempView("people")
scala>spark.sql("select * from people").show
+----+-------+| age| name|+----+-------+|null|Michael|| 30| Andy|| 19| Justin|+----+-------+
-- 定义case class 用来创建Schema
case class Student(id:String,name:String,phone:String,Email:String)
-- RDD与DF反射方式实现
val students = sc.textFile("file:///home/hadoop/data/student.data").map(_.split("\\|")).map(x=>Student(x(0),x(1),x(2),x(3))).toDF()
-- 打印DF信息
students.printSchema
-- show(numRows: Int, truncate: Boolean)
-- numRows截取前20行和truncate读取前20字符串
-- students.show(5,false) 读取前五行和所有字符串
scala> students.show
+---+--------+--------------+--------------------+| id| name| phone| Email|+---+--------+--------------+--------------------+| 1| Burke|1-300-746-8446|ullamcorper.velit...|| 2| Kamal|1-668-571-5046|pede.Suspendisse@...|| 3| Olga|1-956-311-1686|Aenean.eget.metus...|| 4| Belle|1-246-894-6340|vitae.aliquet.nec...|| 5| Trevor|1-300-527-4967|dapibus.id@acturp...|| 6| Laurel|1-691-379-9921|adipiscing@consec...|| 7| Sara|1-608-140-1995|Donec.nibh@enimEt...|| 8| Kaseem|1-881-586-2689|cursus.et.magna@e...|| 9| Lev|1-916-367-5608|Vivamus.nisi@ipsu...|| 10| Maya|1-271-683-2698|accumsan.convalli...|| 11| Emi|1-467-270-1337|est@nunc.com|.......|| 12| Caleb|1-683-212-0896|Suspendisse@Quisq...|| 13|Florence|1-603-575-2444|sit.amet.dapibus@...|| 14| Anika|1-856-828-7883|euismod@ligulaeli...|| 15| Tarik|1-398-171-2268|turpis@felisorci.com|| 16| Amena|1-878-250-3129|lorem.luctus.ut@s...|| 17| Blossom|1-154-406-9596|Nunc.commodo.auct...|| 18| Guy|1-869-521-3230|senectus.et.netus...|| 19| Malachi|1-608-637-2772|Proin.mi.Aliquam@...|| 20| Edward|1-711-710-6552|lectus@aliquetlib...|+---+--------+--------------+--------------------+only showing top 20 rows
-- students.head(5) 返回前几行数据
scala> students.head(5).foreach(println)[1,Burke,1-300-746-8446,ullamcorper.velit.in@ametnullaDonec.co.uk][2,Kamal,1-668-571-5046,pede.Suspendisse@interdumenim.edu][3,Olga,1-956-311-1686,Aenean.eget.metus@dictumcursusNunc.edu][4,Belle,1-246-894-6340,vitae.aliquet.nec@neque.co.uk][5,Trevor,1-300-527-4967,dapibus.id@acturpisegestas.net]
-- 查询具体字段
scala> students.select("id","name").show(5)+---+------+| id| name|+---+------+| 1| Burke|| 2| Kamal|| 3| Olga|| 4| Belle|| 5|Trevor|+---+------+
-- 修改字段取别名
scala> students.select($"name".as("new_name")).show(5)
+--------+|new_name|+--------+| Burke|| Kamal|| Olga|| Belle|| Trevor|+--------+
--查询id大于五
scala> students.filter("id>5").show(5)
+---+------+--------------+--------------------+| id| name| phone| Email|+---+------+--------------+--------------------+| 6|Laurel|1-691-379-9921|adipiscing@consec...|| 7| Sara|1-608-140-1995|Donec.nibh@enimEt...|| 8|Kaseem|1-881-586-2689|cursus.et.magna@e...|| 9| Lev|1-916-367-5608|Vivamus.nisi@ipsu...|| 10| Maya|1-271-683-2698|accumsan.convalli...|+---+------+--------------+--------------------+
-- 查询名称为空或者名称为NULL(filter=where)
scala> students.filter("name=''or name='NULL'").show(false)
+---+----+--------------+--------------------------+|id |name|phone |Email |+---+----+--------------+--------------------------+|21 | |1-711-710-6552|lectus@aliquetlibero.co.uk||22 | |1-711-710-6552|lectus@aliquetlibero.co.uk||23 |NULL|1-711-710-6552|lectus@aliquetlibero.co.uk|+---+----+--------------+--------------------------+
-- 查询ID大于5且名称模糊查询
scala> students.filter("id>5 and name like 'M%'").show(5)
+---+-------+--------------+--------------------+| id| name| phone| Email|+---+-------+--------------+--------------------+| 10| Maya|1-271-683-2698|accumsan.convalli...|| 19|Malachi|1-608-637-2772|Proin.mi.Aliquam@...|+---+-------+--------------+--------------------+
-- 按照名称升序排序且不等于空
scala> students.sort($"name").select("id","name").filter("name <> ''").show(3)
+---+-----+| id| name|+---+-----+| 16|Amena|| 14|Anika|| 4|Belle|+---+-----+
-- 按照名称倒叙排序(sort = orderBy)
scala> students.sort($"name".desc).select("name").show(5)
+------+| name|+------+|Trevor|| Tarik|| Sara|| Olga|| NULL|+------+
-- 年龄分组 汇总
scala> students.groupBy("age").count().show
+----+-----+ | age|count|+----+-----+| 19| 1||null| 1|| 30| 1|+----+-----+
-- 聚合函数使用
scala> students.agg("id" -> "max", "id" -> "sum").show(false)
+-------+-------+|max(id)|sum(id)|+-------+-------+|9 |276.0 |+-------+-------+
-- join操作,using模式seq指定多个字段
students.join(students2, Seq("id", "name"), "inner")
-- DataFrame的join操作有inner, outer, left_outer, right_outer, leftsemi类型
-- 指定类型,指定join的类型
students.join(students2 , students("id" ) === students2( "t1_id"), "inner")
Maven依赖下载
<spark.version>2.3.1</spark.version><!-- 添加Spark Core的dependency --><dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.11</artifactId> <version>${spark.version}</version></dependency><!-- 添加Spark SQL的dependency --><dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_2.11</artifactId> <version>${spark.version}</version></dependency>
idea实现方式:
package com.zrc.ruozedata.sparkSQLimport org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}import org.apache.spark.sql.{Row, SparkSession}object SparkSQL001 extends App { val spark = SparkSession.builder() .master("local[2]") .appName("SparkSQL001") .getOrCreate() // 操作Hive添加 val infos = spark.sparkContext.textFile("file:///F:/infos.txt") // 注意通过ROW获取的需要转换对应类型 val infoss = infos.map(_.split(",")).map(x=>Row(x(0).trim.toInt,x(1),x(2).trim.toInt)) val fields = StructType( Array( StructField("id",IntegerType,true), StructField("name",StringType,true), StructField("age",IntegerType,true) ) ) val schema = StructType(fields) val infoDF = spark.createDataFrame(infoss,schema) infoDF.show() spark.stop()}// case class Info (id:Int,name:String,age:Int)
以上是“DataFrame怎么用”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注编程网精选频道!
--结束END--
本文标题: DataFrame怎么用
本文链接: https://lsjlt.com/news/231379.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
2024-05-24
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0