返回顶部
首页 > 资讯 > 后端开发 > Python >怎么用Python实现时间60秒效果
  • 913
分享到

怎么用Python实现时间60秒效果

2023-06-01 22:06:26 913人浏览 薄情痞子

Python 官方文档:入门教程 => 点击学习

摘要

这篇文章主要介绍“怎么用python实现时间60秒效果”,在日常操作中,相信很多人在怎么用Python实现时间60秒效果问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”怎么用Python实现时间60秒效果”的疑

这篇文章主要介绍“怎么用python实现时间60秒效果”,在日常操作中,相信很多人在怎么用Python实现时间60秒效果问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”怎么用Python实现时间60秒效果”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

一、基本操作

链式比较

i = 3
print(1 < i < 3)  # False
print(1 < i <= 3)  # True

不用else和if实现计算器

from operator import *

def calculator(a, b, k):
   return {
       '+': add,
       '-': sub,
       '*': mul,
       '/': truediv,
       '**': pow
   }[k](a, b)

calculator(1, 2, '+')  # 3
calculator(3, 4, '**')  # 81

函数链

from operator import (add, sub)

def add_or_sub(a, b, oper):
   return (add if oper == '+' else sub)(a, b)

add_or_sub(1, 2, '-')  # -1

字符串的字节长度

def str_byte_len(mystr):
   return (len(mystr.encode('utf-8')))

str_byte_len('i love python')  # 13(个字节)
str_byte_len('字符')  # 6(个字节)

寻找第n次出现位置

def search_n(s, c, n):
   size = 0
   for i, x in enumerate(s):
       if x == c:
           size += 1
       if size == n:
           return i
   return -1

print(search_n("fdasadfadf", "a", 3))# 结果为7,正确
print(search_n("fdasadfadf", "a", 30))# 结果为-1,正确

去掉最高最低求平均

def score_mean(lst):
   lst.sort()
   lst2=lst[1:(len(lst)-1)]
   return round((sum(lst2)/len(lst2)),2)

score_mean([9.1, 9.0,8.1, 9.7, 19,8.2, 8.6,9.8]) # 9.07

交换元素

def swap(a, b):
   return b, a

swap(1, 0)  # (0,1)

二、基础算法

二分搜索

def binarySearch(arr, left, right, x):
   while left <= right:
       mid = int(left + (right - left) / 2); # 找到中间位置。求中点写成(left+right)/2更容易溢出,所以不建议这样写

       # 检查x是否出现在位置mid
       if arr[mid] == x:
           print('found %d 在索引位置%d 处' %(x,mid))
           return mid

           # 假如x更大,则不可能出现在左半部分
       elif arr[mid] < x:
           left = mid + 1 #搜索区间变为[mid+1,right]
           print('区间缩小为[%d,%d]' %(mid+1,right))

       elif x<arr[mid]:
           right = mid - 1 #搜索区间变为[left,mid-1]
           print('区间缩小为[%d,%d]' %(left,mid-1))

   return -1

距离矩阵

x,y = mgrid[0:5,0:5]
list(map(lambda xe,ye: [(ex,ey) for ex, ey in zip(xe, ye)], x,y))
[[(0, 0), (0, 1), (0, 2), (0, 3), (0, 4)],
[(1, 0), (1, 1), (1, 2), (1, 3), (1, 4)],
[(2, 0), (2, 1), (2, 2), (2, 3), (2, 4)],
[(3, 0), (3, 1), (3, 2), (3, 3), (3, 4)],
[(4, 0), (4, 1), (4, 2), (4, 3), (4, 4)]]

三、列表

打印乘法表

for i in range(1,10):
   for j in range(1,i+1):
       print('{0}*{1}={2}'.fORMat(j,i,j*i),end="\t")
   print()

结果:

1*1=1
1*2=2   2*2=4
1*3=3   2*3=6   3*3=9
1*4=4   2*4=8   3*4=12  4*4=16
1*5=5   2*5=10  3*5=15  4*5=20  5*5=25
1*6=6   2*6=12  3*6=18  4*6=24  5*6=30  6*6=36
1*7=7   2*7=14  3*7=21  4*7=28  5*7=35  6*7=42  7*7=49
1*8=8   2*8=16  3*8=24  4*8=32  5*8=40  6*8=48  7*8=56  8*8=64
1*9=9   2*9=18  3*9=27  4*9=36  5*9=45  6*9=54  7*9=63  8*9=72  9*9=81

嵌套数组完全展开

from collections.abc import *

def flatten(input_arr, output_arr=None):
   if output_arr is None:
       output_arr = []
   for ele in input_arr:
       if isinstance(ele, Iterable): # 判断ele是否可迭代
           flatten(ele, output_arr)  # 尾数递归
       else:
           output_arr.append(ele)    # 产生结果
   return output_arr

flatten([[1,2,3],[4,5]], [6,7]) # [6, 7, 1, 2, 3, 4, 5]

将list等分为子组

from math import ceil

def divide(lst, size):
   if size <= 0:
       return [lst]
   return [lst[i * size:(i+1)*size] for i in range(0, ceil(len(lst) / size))]

r = divide([1, 3, 5, 7, 9], 2) # [[1, 3], [5, 7], [9]]

生成fibonacci序列前n项

def fibonacci(n):
   if n <= 1:
       return [1]
   fib = [1, 1]
   while len(fib) < n:
       fib.append(fib[len(fib) - 1] + fib[len(fib) - 2])
   return fib

fibonacci(5)  # [1, 1, 2, 3, 5]

过滤掉各种空值

def filter_false(lst):
   return list(filter(bool, lst))

filter_false([None, 0, False, '', [], 'ok', [1, 2]])# ['ok', [1, 2]]

返回列表头元素

def head(lst):
   return lst[0] if len(lst) > 0 else None

head([])  # None
head([3, 4, 1])  # 3

返回列表尾元素

def tail(lst):
   return lst[-1] if len(lst) > 0 else None

print(tail([]))  # None
print(tail([3, 4, 1]))  # 1

对象转换为可迭代类型

from collections.abc import Iterable

def cast_iterable(val):
   return val if isinstance(val, Iterable) else [val]

cast_iterable('foo')# foo
cast_iterable(12)# [12]
cast_iterable({'foo': 12})# {'foo': 12}

求更长列表

def max_length(*lst):
   return max(*lst, key=lambda v: len(v))

r = max_length([1, 2, 3], [4, 5, 6, 7], [8])# [4, 5, 6, 7]

出现最多元素

def max_frequency(lst):
   return max(lst, default='列表为空', key=lambda v: lst.count(v))

lst = [1, 3, 3, 2, 1, 1, 2]
max_frequency(lst) # 1

求多个列表的最大值

def max_lists(*lst):
   return max(max(*lst, key=lambda v: max(v)))

max_lists([1, 2, 3], [6, 7, 8], [4, 5]) # 8

求多个列表的最小值

def min_lists(*lst):
   return min(min(*lst, key=lambda v: max(v)))

min_lists([1, 2, 3], [6, 7, 8], [4, 5]) # 1

检查list是否有重复元素

def has_duplicates(lst):
   return len(lst) == len(set(lst))

x = [1, 1, 2, 2, 3, 2, 3, 4, 5, 6]
y = [1, 2, 3, 4, 5]
has_duplicates(x)  # False
has_duplicates(y)  # True

求列表中所有重复元素

from collections import Counter

def find_all_duplicates(lst):
   c = Counter(lst)
   return list(filter(lambda k: c[k] > 1, c))

find_all_duplicates([1, 2, 2, 3, 3, 3])  # [2,3]

列表反转

def reverse(lst):
   return lst[::-1]

reverse([1, -2, 3, 4, 1, 2])# [2, 1, 4, 3, -2, 1]

浮点数等差数列

def rang(start, stop, n):
   start,stop,n = float('%.2f' % start), float('%.2f' % stop),int('%.d' % n)
   step = (stop-start)/n
   lst = [start]
   while n > 0:
       start,n = start+step,n-1
       lst.append(round((start), 2))
   return lst

rang(1, 8, 10) # [1.0, 1.7, 2.4, 3.1, 3.8, 4.5, 5.2, 5.9, 6.6, 7.3, 8.0]

四、字典

字典值最大的键值对列表

def max_pairs(dic):
   if len(dic) == 0:
       return dic
   max_val = max(map(lambda v: v[1], dic.items()))
   return [item for item in dic.items() if item[1] == max_val]

max_pairs({'a': -10, 'b': 5, 'c': 3, 'd': 5})# [('b', 5), ('d', 5)]

字典值最小的键值对列表

def min_pairs(dic):
   if len(dic) == 0:
       return []
   min_val = min(map(lambda v: v[1], dic.items()))
   return [item for item in dic.items() if item[1] == min_val]min_pairs({}) # []

r = min_pairs({'a': -10, 'b': 5, 'c': 3, 'd': 5})
print(r)  # [('b', 5), ('d', 5)]

合并两个字典

def merge_dict2(dic1, dic2):
   return {**dic1, **dic2}  # python3.5后支持的一行代码实现合并字典

merge_dict({'a': 1, 'b': 2}, {'c': 3})  # {'a': 1, 'b': 2, 'c': 3}

求字典前n个最大值

from heapq import nlargest

# 返回字典d前n个最大值对应的键
def topn_dict(d, n):
   return nlargest(n, d, key=lambda k: d[k])

topn_dict({'a': 10, 'b': 8, 'c': 9, 'd': 10}, 3)  # ['a', 'd', 'c']

求最小键值对

d={'a':-10,'b':5, 'c':3,'d':5}
min(d.items(),key=lambda x:x[1]) #('a', -10)

五、集合

互为变位词

from collections import Counter
# 检查两个字符串是否 相同字母异序词,简称:互为变位词
def anagram(str1, str2):
   return Counter(str1) == Counter(str2)

anagram('eleven+two', 'twelve+one')  # True 这是一对神器的变位词
anagram('eleven', 'twelve')  # False

六、文件操作

查找指定文件格式文件

import os

def find_file(work_dir,extension='jpg'):
   lst = []
   for filename in os.listdir(work_dir):
       print(filename)
       splits = os.path.splitext(filename)
       ext = splits[1] # 拿到扩展名
       if ext == '.'+extension:
           lst.append(filename)
   return lst

find_file('.','md') # 返回所有目录下的md文件

七、正则和爬虫

爬取天气数据并解析温度值

素材来自朋友袁绍

import requests
from lxml import etree
import pandas as pd
import re

url = 'Http://www.weather.com.cn/weather1d/101010100.shtml#input'
with requests.get(url) as res:
   content = res.content
   html = etree.HTML(content)

通过lxml模块提取值,lxml比beautifulsoup解析在某些场合更高效

location = html.xpath('//*[@id="around"]//a[@target="_blank"]/span/text()')
temperature = html.xpath('//*[@id="around"]/div/ul/li/a/i/text()')

结果:

['香河', '涿州', '唐山', '沧州', '天津', '廊坊', '太原', '石家庄', '涿鹿', '张家口', '保定', '三河', '北京孔庙', '北京国子监', '中国地质博物馆', '月坛公
园', '明城墙遗址公园', '北京市规划展览馆', '什刹海', '南锣鼓巷', '天坛公园', '北海公园', '景山公园', '北京海洋馆']

['11/-5°C', '14/-5°C', '12/-6°C', '12/-5°C', '11/-1°C', '11/-5°C', '8/-7°C', '13/-2°C', '8/-6°C', '5/-9°C', '14/-6°C', '11/-4°C', '13/-3°C'
, '13/-3°C', '12/-3°C', '12/-3°C', '13/-3°C', '12/-2°C', '12/-3°C', '13/-3°C', '12/-2°C', '12/-2°C', '12/-2°C', '12/-3°C']

df = pd.DataFrame({'location':location, 'temperature':temperature})
print('温度列')
print(df['temperature'])

正则解析温度值

df['high'] = df['temperature'].apply(lambda x: int(re.match('(-?[0-9]*?)/-?[0-9]*?°C', x).group(1) ) )
df['low'] = df['temperature'].apply(lambda x: int(re.match('-?[0-9]*?/(-?[0-9]*?)°C', x).group(1) ) )
print(df)

详细说明子字符创捕获

除了简单地判断是否匹配之外,正则表达式还有提取子串的强大功能。用()表示的就是要提取的分组(group)。比如:^(\d{3})-(\d{3,8})$分别定义了两个组,可以直接从匹配的字符串中提取出区号和本地号码

m = re.match(r'^(\d{3})-(\d{3,8})$', '010-12345')
print(m.group(0))
print(m.group(1))
print(m.group(2))

# 010-12345
# 010
# 12345

如果正则表达式中定义了组,就可以在Match对象上用group()方法提取出子串来。

注意到group(0)永远是原始字符串,group(1)、group(2)……表示第1、2、……个子串。

最终结果

Name: temperature, dtype: object
   location temperature  high  low
0         香河     11/-5°C    11   -5
1         涿州     14/-5°C    14   -5
2         唐山     12/-6°C    12   -6
3         沧州     12/-5°C    12   -5
4         天津     11/-1°C    11   -1
5         廊坊     11/-5°C    11   -5
6         太原      8/-7°C     8   -7
7        石家庄     13/-2°C    13   -2
8         涿鹿      8/-6°C     8   -6
9        张家口      5/-9°C     5   -9
10        保定     14/-6°C    14   -6
11        三河     11/-4°C    11   -4
12      北京孔庙     13/-3°C    13   -3
13     北京国子监     13/-3°C    13   -3
14   中国地质博物馆     12/-3°C    12   -3
15      月坛公园     12/-3°C    12   -3
16   明城墙遗址公园     13/-3°C    13   -3
17  北京市规划展览馆     12/-2°C    12   -2
18       什刹海     12/-3°C    12   -3
19      南锣鼓巷     13/-3°C    13   -3
20      天坛公园     12/-2°C    12   -2
21      北海公园     12/-2°C    12   -2
22      景山公园     12/-2°C    12   -2
23     北京海洋馆     12/-3°C    12   -3

批量转化驼峰格式

import re
def camel(s):
   s = re.sub(r"(\s|_|-)+", " ", s).title().replace(" ", "")
   return s[0].lower() + s[1:]

# 批量转化
def batch_camel(slist):
   return [camel(s) for s in slist]

batch_camel(['student_id', 'student\tname', 'student-add']) #['studentId', 'studentName', 'studentAdd']

八、绘图

turtle绘制奥运五环图结果:

怎么用Python实现时间60秒效果

turtle绘制漫天雪花结果:

怎么用Python实现时间60秒效果

4种不同颜色的色块,它们的颜色真的不同吗?

怎么用Python实现时间60秒效果

词频云图

import hashlib
import pandas as pd
from Wordcloud import WordCloud
geo_data=pd.read_excel(r"../data/geo_data.xlsx")
words = ','.join(x for x in geo_data['city'] if x != []) #筛选出非空列表值
wc = WordCloud(
   background_color="green", #背景颜色"green"绿色
   max_words=100, #显示最大词数
   font_path='./fonts/simhei.ttf', #显示中文
   min_font_size=5,
   max_font_size=100,
   width=500  #图幅宽度
   )
x = wc.generate(words)
x.to_file('../data/geo_data.png')

怎么用Python实现时间60秒效果

八、生成器

求斐波那契数列前n项(生成器版)

def fibonacci(n):
   a, b = 1, 1
   for _ in range(n):
       yield a
       a, b = b, a + b

list(fibonacci(5))  # [1, 1, 2, 3, 5]

将list等分为子组(生成器版)

from math import ceil

def divide_iter(lst, n):
   if n <= 0:
       yield lst
       return
   i, div = 0, ceil(len(lst) / n)
   while i < n:
       yield lst[i * div: (i + 1) * div]
       i += 1

list(divide_iter([1, 2, 3, 4, 5], 0))  # [[1, 2, 3, 4, 5]]
list(divide_iter([1, 2, 3, 4, 5], 2))  # [[1, 2, 3], [4, 5]]

九、keras

Keras入门例子

import numpy as np
from keras.models import Sequential
from keras.layers import Dense

data = np.random.random((1000, 1000))
labels = np.random.randint(2, size=(1000, 1))
model = Sequential()
model.add(Dense(32,
               activation='relu',
               input_dim=100))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimize='rmsprop', loss='binary_crossentropy',
             metrics=['accuracy'])
model.fit(data, labels, epochs=10, batch_size=32)
predictions = model.predict(data)

到此,关于“怎么用Python实现时间60秒效果”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注编程网网站,小编会继续努力为大家带来更多实用的文章!

--结束END--

本文标题: 怎么用Python实现时间60秒效果

本文链接: https://lsjlt.com/news/227932.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • 怎么用Python实现时间60秒效果
    这篇文章主要介绍“怎么用Python实现时间60秒效果”,在日常操作中,相信很多人在怎么用Python实现时间60秒效果问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”怎么用Python实现时间60秒效果”的疑...
    99+
    2023-06-01
  • vue怎么实现验证码60秒倒计时功能
    本文小编为大家详细介绍“vue怎么实现验证码60秒倒计时功能”,内容详细,步骤清晰,细节处理妥当,希望这篇“vue怎么实现验证码60秒倒计时功能”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。html代码如下:&l...
    99+
    2023-07-04
  • mysql毫秒时间戳转时间怎么实现
    在MySQL中,可以使用FROM_UNIXTIME()函数将毫秒时间戳转换为时间。需要注意的是,FROM_UNIXTIME()函数接...
    99+
    2024-05-14
    mysql
  • 怎么用css实现垂直时间线效果
    这篇文章主要介绍“怎么用css实现垂直时间线效果”,在日常操作中,相信很多人在怎么用css实现垂直时间线效果问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”怎么用css实现垂直...
    99+
    2024-04-02
  • 怎么用JavaScript实现京东秒杀效果
    本篇内容介绍了“怎么用JavaScript实现京东秒杀效果”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成! 首先先利用html和cs...
    99+
    2023-06-25
  • 使用Python怎么实现一个京东抢秒杀效果
    这篇文章将为大家详细讲解有关使用Python怎么实现一个京东抢秒杀效果,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。python是什么意思Python是一种跨平台的、具有解释性、编译性、互动...
    99+
    2023-06-14
  • javascript怎么实现暂停时间的效果
    JavaScript 是一门广受欢迎的编程语言,常常用于构建动态网页和交互式应用程序。在 Web 开发中,控制时间是重要的一部分,因为时间会影响到页面的元素、动画以及用户交互等方面。在 JavaScript 中,我们有多种方式来控制时间,包...
    99+
    2023-05-14
  • Vue实现时间轴效果
    本文实例为大家分享了Vue实现时间轴效果的具体代码,供大家参考,具体内容如下 时间轴上的时间点数和描述文本均可自定义设置 效果图如下: ①创建时间轴组件Timeline.vue: ...
    99+
    2024-04-02
  • 使用CSS3怎么实现一个时间轴效果
    这篇文章将为大家详细讲解有关使用CSS3怎么实现一个时间轴效果 ,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。什么是csscss是一种用来表现HTML或XML等文件样式的计算机语言,主要是用...
    99+
    2023-06-08
  • jquery 倒计时效果实现秒杀思路
    复制代码 代码如下: <script type="text/javascript"> $(function(){ countDown("2015/9/8 11:11:59...
    99+
    2022-11-15
    jquery 倒计时
  • php 怎么实现时间把时分秒去掉
    php实现时间把时分秒去掉的方法:1、创建一个php示例文件;2、使用strtotime函数将日期时间转换为时间戳;3、通过date函数对日期或时间进行格式化即可去掉时分秒。本教程操作环境:Windows10系统、PHP8.1版、Dell ...
    99+
    2023-05-14
    php 时间
  • python 时间 T 去掉带上ms 毫秒 的时间格式怎么实现
    今天小编给大家分享的是python 时间 T 去掉带上ms 毫秒 的时间格式怎么实现,相信很多人都不太了解,为了让大家更加了解,所以给大家总结了以下内容,一起往下看吧。一定会有所收获的哦。import datetime# ...
    99+
    2023-06-14
  • JavaScript实现时间范围效果
    本文实例为大家分享了JavaScript实现时间范围效果的具体代码,供大家参考,具体内容如下 当前时间往前的时间范围(六个月之前) 效果图 js文件代码片 //rangeVa...
    99+
    2024-04-02
  • vue+swiper实现时间轴效果
    本文实例为大家分享了vue+swiper实现时间轴效果的具体代码,供大家参考,具体内容如下 效果: 首先引入,有淘宝镜像的用 cnpm install swiper --save ...
    99+
    2024-04-02
  • 怎么在Python下使用Pygame实现时钟效果
    这篇文章主要讲解了“怎么在Python下使用Pygame实现时钟效果”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么在Python下使用Pygame实现时钟效果”吧!本文实例为大家分享了P...
    99+
    2023-06-20
  • python怎么实现好看的时钟效果
    这篇文章主要介绍“python怎么实现好看的时钟效果”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“python怎么实现好看的时钟效果”文章能帮助大家解决问题。游戏用到初高中使用的三角函数等知识开发,...
    99+
    2023-06-30
  • Python使用Pygame实现时钟效果
    本文实例为大家分享了Python使用Pygame实现时钟效果的具体代码,供大家参考,具体内容如下 import pygame,sys,math,random from pygame.locals import *...
    99+
    2022-06-02
    python 时钟
  • vue实现物流时间轴效果
    本文实例为大家分享了vue实现物流时间轴效果的具体代码,供大家参考,具体内容如下 son组件(物流时间轴组件) <template> <div class...
    99+
    2024-04-02
  • Android如何实现时间线效果
    目录1、背景2、分析2.1功能分析2.2细节分析2.3方案设想3、编码3.1第一版3.2第二版4、结语1、背景 这天下班前,老板找到小庄:“有个页面要优化,小需求,你跟进一下。” 小...
    99+
    2024-04-02
  • JavaScript模拟实现"双11"限时秒杀效果
    目录【案例】限时秒杀一、全局作用域二、弹出对话框和窗口prompt()方法confirm()方法open()方法三、窗口位置和大小四、框架操作五、定时器【案例】限时秒杀 代码实现思...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作