返回顶部
首页 > 资讯 > 后端开发 > Python >Pytorch损失函数torch.nn.NLLLoss()的使用
  • 772
分享到

Pytorch损失函数torch.nn.NLLLoss()的使用

Pytorch损失函数torch.nn.NLLLoss()使用torch.nn.NLLLoss() 2023-02-01 12:02:52 772人浏览 八月长安

Python 官方文档:入门教程 => 点击学习

摘要

目录PyTorch损失函数torch.nn.NLLLoss()交叉熵计算公式nn.NLLLoss计算公式log_softmaxnn.NLLLossnn.CrossEntropyLos

Pytorch损失函数torch.nn.NLLLoss()

在各种深度学习框架中,我们最常用的损失函数就是交叉熵(torch.nn.CrossEntropyLoss),熵是用来描述一个系统的混乱程度,通过交叉熵我们就能够确定预测数据与真是数据之间的相近程度。

交叉熵越小,表示数据越接近真实样本。

交叉熵计算公式

就是我们预测的概率的对数与标签的乘积,当qk->1的时候,它的损失接近零。

nn.NLLLoss

官方文档中介绍称:

nn.NLLLoss输入是一个对数概率向量和一个目标标签,它与nn.CrossEntropyLoss的关系可以描述为:softmax(x)+log(x)+nn.NLLLoss====>nn.CrossEntropyLoss

CrossEntropyLoss()=log_softmax() + NLLLoss() 

其中softmax函数又称为归一化指数函数,它可以把一个多维向量压缩在(0,1)之间,并且它们的和为1.

计算公式

1 

示例代码:

import math
z = [1.0, 2.0, 3.0, 4.0, 1.0, 2.0, 3.0]
z_exp = [math.exp(i) for i in z]  
print(z_exp)  # Result: [2.72, 7.39, 20.09, 54.6, 2.72, 7.39, 20.09] 
sum_z_exp = sum(z_exp)  
print(sum_z_exp)  # Result: 114.98 
softmax = [round(i / sum_z_exp, 3) for i in z_exp]
print(softmax)  # Result: [0.024, 0.064, 0.175, 0.475, 0.024, 0.064, 0.175]

log_softmax

log_softmax是指在softmax函数的基础上,再进行一次log运算,此时结果有正有负,log函数的值域是负无穷到正无穷,当x在0—1之间的时候,log(x)值在负无穷到0之间。

nn.NLLLoss

此时,nn.NLLLoss的结果就是把上面的输出与Label对应的那个值拿出来,再去掉负号,再求均值。

代码示例:

import torch
input=torch.randn(3,3)
soft_input = torch.nn.Softmax(dim=0)
soft_input(input)
Out[20]: 
tensor([[0.7284, 0.7364, 0.3343],
        [0.1565, 0.0365, 0.0408],
        [0.1150, 0.2270, 0.6250]])

#对softmax结果取log
torch.log(soft_input(input))
Out[21]: 
tensor([[-0.3168, -0.3059, -1.0958],
        [-1.8546, -3.3093, -3.1995],
        [-2.1625, -1.4827, -0.4701]])

假设标签是[0,1,2],第一行取第0个元素,第二行取第1个,第三行取第2个,去掉负号,即[0.3168,3.3093,0.4701],求平均值,就可以得到损失值。

(0.3168+3.3093+0.4701)/3
Out[22]: 1.3654000000000002

#验证一下

loss=torch.nn.NLLLoss()
target=torch.tensor([0,1,2])
loss(input,target)
Out[26]: tensor(0.1365)

nn.CrossEntropyLoss

loss=torch.nn.NLLLoss()
target=torch.tensor([0,1,2])
loss(input,target)
Out[26]: tensor(-0.1399)
loss =torch.nn.CrossEntropyLoss()
input = torch.tensor([[ 1.1879,  1.0780,  0.5312],
        [-0.3499, -1.9253, -1.5725],
        [-0.6578, -0.0987,  1.1570]])
target = torch.tensor([0,1,2])
loss(input,target)
Out[30]: tensor(0.1365)

以上为全部实验验证两个loss函数之间的关系!!!

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。

--结束END--

本文标题: Pytorch损失函数torch.nn.NLLLoss()的使用

本文链接: https://lsjlt.com/news/193812.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作