返回顶部
首页 > 资讯 > 后端开发 > Python >pytorch自定义loss损失函数
  • 586
分享到

pytorch自定义loss损失函数

2024-04-02 19:04:59 586人浏览 八月长安

Python 官方文档:入门教程 => 点击学习

摘要

目录步骤1:添加自定义的类步骤2:修改使用的loss函数自定义loss的方法有很多,但是在博主查资料的时候发现有挺多写法会有问题,靠谱一点的方法是把loss作为一个PyTorch的模

自定义loss的方法有很多,但是在博主查资料的时候发现有挺多写法会有问题,靠谱一点的方法是把loss作为一个PyTorch的模块,

比如:

class CustomLoss(nn.Module): # 注意继承 nn.Module
    def __init__(self):
        super(CustomLoss, self).__init__()

    def forward(self, x, y):
        # .....这里写x与y的处理逻辑,即loss的计算方法
        return loss # 注意最后只能返回Tensor值,且带梯度,即 loss.requires_grad == True

示例代码:

以一个pytorch求解线性回归的代码为例:

import torch
import torch.nn as nn
import numpy as np
import os

os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"


def get_x_y():
    np.random.seed(0)
    x = np.random.randint(0, 50, 300)
    y_values = 2 * x + 21
    x = np.array(x, dtype=np.float32)
    y = np.array(y_values, dtype=np.float32)
    x = x.reshape(-1, 1)
    y = y.reshape(-1, 1)
    return x, y


class LinearRegressionModel(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(LinearRegressionModel, self).__init__()
        self.linear = nn.Linear(input_dim, output_dim)  # 输入的个数,输出的个数

    def forward(self, x):
        out = self.linear(x)
        return out


if __name__ == '__main__':
    input_dim = 1
    output_dim = 1
    x_train, y_train = get_x_y()

    model = LinearRegressionModel(input_dim, output_dim)
    epochs = 1000  # 迭代次数
    optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
    model_loss = nn.MSELoss() # 使用MSE作为loss
    # 开始训练模型
    for epoch in range(epochs):
        epoch += 1
        # 注意转行成tensor
        inputs = torch.from_numpy(x_train)
        labels = torch.from_numpy(y_train)
        # 梯度要清零每一次迭代
        optimizer.zero_grad()
        # 前向传播
        outputs: torch.Tensor = model(inputs)
        # 计算损失
        loss = model_loss(outputs, labels)
        # 返向传播
        loss.backward()
        # 更新权重参数
        optimizer.step()
        if epoch % 50 == 0:
            print('epoch {}, loss {}'.fORMat(epoch, loss.item()))

步骤1:添加自定义的类

我们就用自定义的写法来写与MSE相同的效果,MSE计算公式如下:

添加一个类:

class CustomLoss(nn.Module):
    def __init__(self):
        super(CustomLoss, self).__init__()
        self.mse_loss = nn.MSELoss()

    def forward(self, x, y):
        mse_loss = torch.mean(torch.pow((x - y), 2)) # x与y相减后平方,求均值即为MSE
        return mse_loss

步骤2:修改使用的loss函数

只需要把原始代码中的:

model_loss = nn.MSELoss() # 使用MSE作为loss

改为:

model_loss = CustomLoss()  # 自定义loss

即可

完整代码:

import torch
import torch.nn as nn
import numpy as np
import os

os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"


def get_x_y():
    np.random.seed(0)
    x = np.random.randint(0, 50, 300)
    y_values = 2 * x + 21
    x = np.array(x, dtype=np.float32)
    y = np.array(y_values, dtype=np.float32)
    x = x.reshape(-1, 1)
    y = y.reshape(-1, 1)
    return x, y


class LinearRegressionModel(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(LinearRegressionModel, self).__init__()
        self.linear = nn.Linear(input_dim, output_dim)  # 输入的个数,输出的个数

    def forward(self, x):
        out = self.linear(x)
        return out


class CustomLoss(nn.Module):
    def __init__(self):
        super(CustomLoss, self).__init__()
        self.mse_loss = nn.MSELoss()

    def forward(self, x, y):
        mse_loss = torch.mean(torch.pow((x - y), 2))
        return mse_loss


if __name__ == '__main__':
    input_dim = 1
    output_dim = 1
    x_train, y_train = get_x_y()

    model = LinearRegressionModel(input_dim, output_dim)
    epochs = 1000  # 迭代次数
    optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
    # model_loss = nn.MSELoss() # 使用MSE作为loss
    model_loss = CustomLoss()  # 自定义loss
    # 开始训练模型
    for epoch in range(epochs):
        epoch += 1
        # 注意转行成tensor
        inputs = torch.from_numpy(x_train)
        labels = torch.from_numpy(y_train)
        # 梯度要清零每一次迭代
        optimizer.zero_grad()
        # 前向传播
        outputs: torch.Tensor = model(inputs)
        # 计算损失
        loss = model_loss(outputs, labels)
        # 返向传播
        loss.backward()
        # 更新权重参数
        optimizer.step()
        if epoch % 50 == 0:
            print('epoch {}, loss {}'.format(epoch, loss.item()))

到此这篇关于pytorch自定义loss损失函数的文章就介绍到这了,更多相关pytorch loss损失函数内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: pytorch自定义loss损失函数

本文链接: https://lsjlt.com/news/138854.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • pytorch自定义loss损失函数
    目录步骤1:添加自定义的类步骤2:修改使用的loss函数自定义loss的方法有很多,但是在博主查资料的时候发现有挺多写法会有问题,靠谱一点的方法是把loss作为一个pytorch的模...
    99+
    2024-04-02
  • PyTorch中怎么实现自定义损失函数
    要实现自定义损失函数,可以按照以下步骤在PyTorch中实现: 创建一个继承自torch.nn.Module的类,该类用于定义自定...
    99+
    2024-03-05
    PyTorch
  • PyTorch中怎么定义损失函数
    在PyTorch中,我们可以使用torch.nn模块中的各种损失函数来定义损失函数。以下是一些常用的损失函数及其定义方法: 均方误...
    99+
    2024-04-02
  • 如何在PyTorch中定义一个损失函数
    在PyTorch中定义损失函数非常简单。你可以使用torch.nn模块中提供的各种损失函数,也可以自定义自己的损失函数。 下面是一个...
    99+
    2024-03-14
    PyTorch
  • tensorflow2中怎么自定义损失函数
    tensorflow2中怎么自定义损失函数,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。Keras的核心原则是逐步揭示复杂性,可以在保持相应的高级便利性的同时,对操作细节进行更...
    99+
    2023-06-20
  • 详解MindSpore自定义模型损失函数
    目录一、技术背景二、MindSpore内置的损失函数三、自定义损失函数四、自定义其他算子五、多层算子的应用六、重定义reduction一、技术背景 损失函数是机器学习中直接决定训练结...
    99+
    2024-04-02
  • Neuroph是否支持自定义损失函数
    Neuroph不支持直接定义自定义损失函数。Neuroph是一个用Java编写的神经网络库,它提供了一些常见的损失函数,如平方损失函...
    99+
    2024-04-02
  • 机器学习之损失函数(Loss Function)
    损失函数(Loss Function)是机器学习和深度学习中的关键概念,它用于衡量模型的预测与实际目标之间的差异或误差。损失函数的选择对于模型的训练和性能评估至关重要,不同的任务和问题通常需要不同的损失函数。 以下是一些常见的损失函数以及它...
    99+
    2023-08-30
    神经网络 人工智能 深度学习
  • Keras中如何使用自定义损失函数
    在Keras中使用自定义损失函数需要定义一个损失函数的Python函数,并将其传递给模型的compile()方法中。以下是一个简单的...
    99+
    2024-04-02
  • tensorflow2 自定义损失函数使用的隐藏坑
    Keras的核心原则是逐步揭示复杂性,可以在保持相应的高级便利性的同时,对操作细节进行更多控制。当我们要自定义fit中的训练算法时,可以重写模型中的train_step方法,然后调用...
    99+
    2024-04-02
  • PaddlePaddle中如何实现自定义的损失函数
    在PaddlePaddle中实现自定义的损失函数,可以通过继承paddle.nn.Layer类并重载__call__方法来实现。以下...
    99+
    2024-04-02
  • 推荐系统笔记(十):InfoNCE Loss 损失函数
    背景         对比学习损失函数有多种,其中比较常用的一种是InfoNCE loss。最近学习实现了SGL推荐系统算法,对InfoNCE Loss做一个总结。         InfoNCE Loss损失函数是基于对比度的一个损失函...
    99+
    2023-09-05
    推荐算法 算法 机器学习 python 人工智能
  • MindSpore自定义模型损失函数的示例分析
    这篇文章将为大家详细讲解有关MindSpore自定义模型损失函数的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。一、技术背景损失函数是机器学习中直接决定训练结果好坏的一个模块,该函数用于定义计算出...
    99+
    2023-06-20
  • 如何利用Torch构建自定义的损失函数
    要利用Torch构建自定义的损失函数,你需要定义一个新的损失函数类,并重写其中的forward方法来计算损失值。接下来是一个示例代码...
    99+
    2024-04-02
  • Chainer怎么自定义损失函数和评估指标
    在Chainer中,可以通过定义一个函数来自定义损失函数和评估指标。下面分别介绍如何自定义损失函数和评估指标: 自定义损失函数: i...
    99+
    2024-04-02
  • 如何在Keras中使用自定义的损失函数
    要在Keras中使用自定义的损失函数,首先需要定义一个Python函数来表示损失函数,然后将其传递给Keras模型的compile(...
    99+
    2024-03-12
    Keras
  • NLL loss(负对数似然损失)
    NLL损失在NLP中含义 : 在自然语言处理中,通常用于分类任务,例如语言模型、情感分类等。NLL损失全称为Negative Log-Likelihood Loss,其含义是负对数似然损失。 在NLP任务中,我们通常将文本数据表示为一个序列...
    99+
    2023-09-11
    机器学习 概率论 python
  • Pytorch——常用损失函数详解
    文章目录 损失函数总结部分特殊损失函数详解1. 余弦损失函数 `torch.nn.CosineEmbeddingLoss` 损失函数总结 首先直接贴上个人看过比较好的一些的解...
    99+
    2023-09-24
    深度学习 python 神经网络
  • Pytorch损失函数torch.nn.NLLLoss()的使用
    目录Pytorch损失函数torch.nn.NLLLoss()交叉熵计算公式nn.NLLLoss计算公式log_softmaxnn.NLLLossnn.CrossEntropyLos...
    99+
    2023-02-01
    Pytorch损失函数 torch.nn.NLLLoss() 使用torch.nn.NLLLoss()
  • 使用tensorflow2自定义损失函数需要注意什么
    小编给大家分享一下使用tensorflow2自定义损失函数需要注意什么,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!Keras的核心原则是逐步揭示复杂性,可以在保...
    99+
    2023-06-28
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作