返回顶部
首页 > 资讯 > 后端开发 > Python >机器学习——KMeans
  • 578
分享到

机器学习——KMeans

机器KMeans 2023-01-30 22:01:58 578人浏览 独家记忆

Python 官方文档:入门教程 => 点击学习

摘要

导入类库 1 from sklearn.cluster import KMeans 2 from sklearn.datasets import make_blobs 3 import numpy as np 4 import matp

导入类库

1 from sklearn.cluster import KMeans
2 from sklearn.datasets import make_blobs
3 import numpy as np
4 import matplotlib.pyplot as plt

  KMeans算法的过程:(假如有两类)

  1. 随机选择两个点作为聚类的中心
  2. 计算所有点距离两个中心的距离,选择距离较近的点作为类别。(例如:距离蓝点近,类别是蓝色)
  3. 计算已经分好类的各组数据的平均值,使用各组数据的平均值中心作为新的中心
  4. 以新的中心为依据跳转至第2步
  5. 直到收敛(两次迭代的数值没有明显的变化:新中心点距离上一次中心点的距离小于某个阈值,例如:0.03)

代码

 1 plt.figure(figsize=(6, 3))
 2 n_samples = 1500
 3 random_state = 170
 4 '''
 5 make_blobs聚类数据生成器:用来生成聚类算法的测试数据
 6 n_samples:待生成的样本的总数
 7 n_features:每个样本的特征数
 8 centers:类别数
 9 cluster_std:每个类别的方差,放在列表中
10 '''
11 X, y = make_blobs(n_samples=n_samples, random_state=random_state)
12 '''
13 KMeans是结果受初始值影响的局部最优的迭代算法
14 n_clusters:K值,类别数
15 max_iter:最大迭代次数,凸数据集可忽略该值,非凸数据集可能很难收敛,可指定最大迭代次数让算法可以及时推出循环
16 n_init:用不同的初始化质心运行算法的次数,默认是10,K值较大时,可适当增大该值
17 init:初始值选择的方式,默认为k-means++
18 alGorithm:auto、full、elkan;auto自动选择,数据值稀疏时选择full,数据稠密时选择elkan
19 '''
20 y_pred = KMeans(n_clusters=2, random_state=random_state).fit_predict(X)
21 
22 # print(X[:, 0])
23 # print(y)
24 # for i in y_pred:
25 #     print(i)
26 
27 # 根据颜色画出散点图
28 plt.subplot(121)
29 plt.scatter(X[:, 0], X[:, 1], c=y_pred)
30 plt.subplot(122)
31 plt.scatter(X[:, 0], X[:, 1], c=y)
32 plt.show()

 

--结束END--

本文标题: 机器学习——KMeans

本文链接: https://lsjlt.com/news/179978.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • 机器学习——KMeans
    导入类库 1 from sklearn.cluster import KMeans 2 from sklearn.datasets import make_blobs 3 import numpy as np 4 import matp...
    99+
    2023-01-30
    机器 KMeans
  • Python机器学习之Kmeans基础算法
    一、K-means基础算法简介 k-means算法是一种聚类算法,所谓聚类,即根据相似性原则,将具有较高相似度的数据对象划分至同一类簇,将具有较高相异度的数据对象划分至不同类簇。聚类与分类最大的区别在于,聚类过程为无...
    99+
    2022-06-02
    Python Kmeans基础算法 python机器学习 python Kmeans
  • 机器学习:学习KMeans算法,了解模型创建、使用模型及模型评价
    机器学习:学习KMeans算法,了解模型创建、使用模型及模型评价 作者:i阿极 作者简介:Python领域新星作者、多项比赛获奖者:博主个人首页 😊😊😊如果觉得文章不错或能帮助到你学习,可以点...
    99+
    2023-08-31
    机器学习 python kmeans 算法
  • 机器学习:基于Kmeans聚类算法对银行客户进行分类
    机器学习:基于Kmeans聚类算法对银行客户进行分类 作者:i阿极 作者简介:Python领域新星作者、多项比赛获奖者:博主个人首页 😊😊😊如...
    99+
    2023-08-31
    机器学习 聚类 kmeans python 原力计划
  • 机器学习
    由于工作原因,机器学习相关核心文章无法发布,对机器学习感兴趣的,随时欢迎私聊我。 人工智能(机器学习)学习之路推荐 《机器学习实战》-机器学习基础 《机器学习实战》-k近邻算法 《机器学习实战》-决策树 《机器学习实战》-线性...
    99+
    2023-01-31
    机器
  • 机器学习:无监督学习
    文章目录 线性学习方法聚类ClusteringKmeansHAC 分布表示降维PCAMatrix FactorizationManifold LearningLLELaplacian Eigenmapst-SEN ...
    99+
    2023-08-30
    机器学习 无监督学习
  • Python机器学习:6本机器学习书籍推
    机器学习是实现人工智能的一种途径,它和数据开掘有一定的相似性,也是一门多领域交叉学科,触及概率论、核算学、逼近论、凸剖析、核算复杂性理论等多门学科。对比于数据开掘从大数据之间找互相特性而言,机器学习愈加注重算法的设计,让核算机可以白动地从...
    99+
    2023-01-31
    机器 书籍 Python
  • 【机器学习】XGBoost
    1.什么是XGBoost         XGBoost(eXtreme Gradient Boosting)极度梯度提升树,属于集成学习中的boosting框架算法。对于提升树,简单说就是一个模型表现不好,继续按照原来模型表现不好的那部分...
    99+
    2023-09-05
    机器学习 人工智能 python
  • 机器学习---sklearn
    1.Sklearn简介 sklearn (全称 Scikit-Learn) 是基于 Python 语言的机器学习工具,Sklea是处理机器学习 (有监督学习和无监督学习) 的包。它建立在 NumPy...
    99+
    2023-09-01
    sklearn 机器学习 python
  • 机器学习概述
    文章目录 机器学习应用背景数据挖掘个性化定制替代人力的软件应用 什么是机器学习示例 机器学习系统举例IBM Watson DeepQAIBM Watson技术需求相关技术 -- DeepQA ...
    99+
    2023-08-30
    机器学习 人工智能
  • 机器学习资源
    推荐资源大部分来自《深度学习入门之 PyTorch》(廖星宇 编著)。 Python 语言三个学习资源 (1)《笨方法学 Python》(Learn Python the Hard Way) 本书面向零基础的读者,通过一系列简单的例子快速...
    99+
    2023-01-31
    机器 资源
  • 【数据科学系统学习】机器学习算法 #
    本篇内容为《机器学习实战》第 6 章 支持向量机部分程序清单。所用代码为 python3。 支持向量机优点:泛化错误率低,计算开销不大,结果易解释。 缺点:对参数调节和核函数的选择敏感,原始分类器不加修改仅适用于处理二分类问题。适用数据...
    99+
    2023-01-31
    算法 机器 科学
  • 机器学习期末复习题
    1.以下哪项不属于知识发现的过程?( D) A、数据清理 B、数据挖掘 C、知识可视化表达 D、数据测试 2.协同过滤分析用户兴趣,在用户群中找到指定用户的相似(兴趣)用户,综合这些用户对某一信息的评价,形成系统对该指定用户对此信息的喜...
    99+
    2023-10-09
    python 数据挖掘 开发语言 人工智能
  • 深度学习详解之初试机器学习
    机器学习可应用在各个方面,本篇将在系统性进入机器学习方向前,初步认识机器学习,利用线性回归预测波士顿房价; 原理简介 利用线性回归最简单的形式预测房价,只需要把它当做是一次线性函数y...
    99+
    2024-04-02
  • 机器学习——决策树
    决策树是一种用于分类和回归的非参数监督学习方法。目标是创建一个模型,通过从数据特性中推导出简单的决策规则来预测目标变量的值 1 import numpy as np 2 import pandas as pd 3 from skl...
    99+
    2023-01-30
    机器 决策树
  • PHP中的机器学习
    在当今时代,机器学习已经不再是一项神秘的技术。越来越多的人意识到了机器学习的重要性,并且开始学习和应用。但是,大多数人在想到机器学习时,首先想到的是Python,而很少有人知道PHP也可以进行机器学习。PHP是一种通用编程语言,通常用于We...
    99+
    2023-05-23
    机器学习 PHP AI (人工智能)
  • MNIST机器学习入门
    当我们开始学习编程的时候,第一件事往往是学习打印"Hello World"。就好比编程入门有Hello World,机器学习入门有MNIST。 MNIST是一个入门级的计算机视觉数据集,它包含各种手写数字图片。它也包含每一张图片对应的标签...
    99+
    2023-01-31
    入门 机器 MNIST
  • python机器学习中英
    监督学习,supervised learning无监督学习,unsupervised learning分类,classificat回归,regression降维,dimensionality reduction聚类,clustering特征...
    99+
    2023-01-31
    中英 机器 python
  • 机器学习——支持向量机
    SVM就是试图把棍放在一堆球中的最佳位置,好让在棍的两边有尽可能大的间隙。这个间隙就是球到棍的距离。 支持向量机:找到分类界面,使支持向量间的间隔最大,支持向量到分割界面的距离最小 支持向量是通过到分割界面距离最小的点的向量,且两向...
    99+
    2023-01-30
    向量 机器
  • 深度学习和机器学习有什么差别
    深度学习和机器学习是两个相关但不同的概念。机器学习是一种广义的概念,指的是让计算机系统通过学习数据并改善性能,而不是通过显式的编程。...
    99+
    2023-09-20
    深度学习
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作