返回顶部
首页 > 资讯 > 后端开发 > Python >机器学习——决策树
  • 749
分享到

机器学习——决策树

机器决策树 2023-01-30 22:01:03 749人浏览 安东尼

Python 官方文档:入门教程 => 点击学习

摘要

决策树是一种用于分类和回归的非参数监督学习方法。目标是创建一个模型,通过从数据特性中推导出简单的决策规则来预测目标变量的值 1 import numpy as np 2 import pandas as pd 3 from skl

决策树是一种用于分类和回归的非参数监督学习方法。目标是创建一个模型,通过从数据特性中推导出简单的决策规则来预测目标变量的值

1 import numpy as np
2 import pandas as pd
3 from sklearn.feature_extraction import DictVectorizer
4 from sklearn.tree import DecisionTreeClassifier
5 from sklearn.model_selection import train_test_split
 1 def decide_play1():
 2     df = pd.read_csv('dtree.csv')
 3     dict_train = df.to_dict(orient='record')
 4 
 5     dv = DictVectorizer(sparse=False)
 6     dv_train = dv.fit_transfORM(dict_train)
 7     # print(dv_train)
 8     # dv_train1 = np.append(dv_train, dv_train[:, 5].reshape(-1, 1), axis=1)
 9     # dv_train2 = np.delete(dv_train1, 5, axis=1)
10     # print('*' * 50)
11     # print(dv_train2)
12 
13     # print(dv_train[:,:5])
14     # print(dv_train[:,6:])
15     # print(dv_train[:,5])
16     y = dv_train[:, 5]
17     x = np.delete(dv_train, 5, axis=1)
18     print(x)
19     print(y)
20     dtc = DecisionTreeClassifier()
21     dtc.fit(x, y.reshape(-1, 1))
22     print(dtc.predict(np.array([x[3]])))
 1 def decide_play():
 2     # ID3
 3     df = pd.read_csv('dtree.csv')
 4     # 将数据转换为字典格式,orient='record'参数指定数据格式为{column:value,column:value}的形式
 5     dict_train = df.loc[:, ['Outlook', 'Temperatur', 'Humidity', 'Windy']].to_dict(orient='record')
 6     dict_target = pd.DataFrame(df['PlayGolf'], columns=['PlayGolf']).to_dict(orient='record')
 7 
 8 
 9     # 训练数据字典向量化
10     dv_train = DictVectorizer(sparse=False)
11     x_train = dv_train.fit_transform(dict_train)
12 
13     # 目标数据字典向量化
14     dv_target = DictVectorizer(sparse=False)
15     y_target = dv_target.fit_transform(dict_target)
16 
17     # 创建训练模型并训练
18     d_tree = DecisionTreeClassifier()
19     d_tree.fit(x_train, y_target)
20 
21     data_predict = {
22         'Humidity': 85,
23         'Outlook': 'sunny',
24         'Temperatur': 85,
25         'Windy': False
26     }
27 
28     x_data = dv_train.transform(data_predict)
29     print(dv_target.inverse_transform(d_tree.predict(x_data)))
30 
31 
32 if __name__ == '__main__':
33     decide_play()
 1 import numpy as np
 2 import pandas as pd
 3 from sklearn.feature_extraction import DictVectorizer
 4 from sklearn.model_selection import train_test_split
 5 from sklearn.tree import DecisionTreeClassifier
 6 from sklearn.metrics import r2_score
 7 
 8 
 9 def titanic_tree():
10     # 获取数据
11     df = pd.read_csv('Titanic.csv')
12     # df = df.fillna(0)
13     # dict_train = df.loc[:, ['Pclass', 'Age', 'Sex']].to_dict(orient='record')
14     # dict_target = pd.DataFrame(df['Survived'], columns=['Survived']).to_dict(orient='record')
15     # x_train, x_test, y_train, y_test = train_test_split(dict_train, dict_target, test_size=0.25)
16 
17     # 处理数据,找出特征值和目标值
18     x = df.loc[:, ['Pclass', 'Age', 'Sex']]
19     y = df.loc[:, ['Survived']]
20     # 缺失值处理
21     x['Age'].fillna(x['Age'].mean(), inplace=True)
22     # 分割数据集到训练集和测试集
23     x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
24     # print(y_test)
25     dv_train = DictVectorizer(sparse=False)
26     x_train = dv_train.fit_transform(x_train.to_dict(orient='record'))
27     x_test = dv_train.transform(x_test.to_dict(orient='record'))
28 
29     dv_target = DictVectorizer(sparse=False)
30     y_target = dv_target.fit_transform(y_train.to_dict(orient='record'))
31     y_test = dv_target.transform(y_test.to_dict(orient='record'))
32     # print(y_test)
33     # 用决策树进行预测
34     d_tree = DecisionTreeClassifier()
35     d_tree.fit(x_train, y_train)
36 
37     data_predict = {
38         'Pclass': 1,
39         'Age': 38,
40         'Sex': 'female'
41 
42     }
43 
44     x_data = dv_train.transform(data_predict)
45     print(dv_target.inverse_transform(d_tree.predict(x_data).reshape(-1,1)))
46     # print(d_tree.predict(x_test))
47     # print(y_test)
48     # 预测准确率
49     # print(d_tree.score(x_test, y_test))
50 
51 
52 if __name__ == '__main__':
53     titanic_tree()

 (Decision Tree)及其变种是另一类将输入空间分成不同的区域,每个区域有独立参数的算法

决策树分类算法是一种基于实例的归纳学习方法,它能从给定的无序的训练样本中,提炼出树型的分类模型。树中的每个非叶子节点记录了使用哪个特征来进行类别的判断,每个叶子节点则代表了最后判断的类别。根节点到每个叶子节点均形成一条分类的路径规则。而对新的样本进行测试时,只需要从根节点开始,在每个分支节点进行测试,沿着相应的分支递归地进入子树再测试,一直到达叶子节点,该叶子节点所代表的类别即是当前测试样本的预测类别

--结束END--

本文标题: 机器学习——决策树

本文链接: https://lsjlt.com/news/179851.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • 机器学习——决策树
    决策树是一种用于分类和回归的非参数监督学习方法。目标是创建一个模型,通过从数据特性中推导出简单的决策规则来预测目标变量的值 1 import numpy as np 2 import pandas as pd 3 from skl...
    99+
    2023-01-30
    机器 决策树
  • Python机器学习之决策树
    目录一、要求二、原理三、信息增益的计算方法四、实现过程五、程序六、遇到的问题一、要求 二、原理 决策树是一种类似于流程图的结构,其中每个内部节点代表一个属性上的“测试”,每个分支代...
    99+
    2024-04-02
  • 机器学习python实战之决策树
    决策树原理:从数据集中找出决定性的特征对数据集进行迭代划分,直到某个分支下的数据都属于同一类型,或者已经遍历了所有划分数据集的特征,停止决策树算法。   每次划分数据集的特征都有很多,那么我们怎么来选择到底...
    99+
    2022-06-04
    实战 机器 决策树
  • Python机器学习之决策树和随机森林
    目录什么是决策树决策树组成节点的确定方法决策树基本流程决策树的常用参数代码实现决策树之分类树网格搜索在分类树上的应用分类树在合成数据的表现什么是随机森林随机森林的原理随机森林常用参数决策树和随机森林效果实例用随机森林...
    99+
    2022-06-02
    Python 决策树 Python 随机森林
  • 分析机器学习之决策树Python实现
    目录一、环境准备二、决策树是什么三、快速入门分类树四、详细分析入门案例五、分类树参数解释5.1、criterion5.2、random_state & splitter5.3、剪枝参数5.4、目标权重参数:c...
    99+
    2022-06-02
    Python 决策树 Python 机器学习
  • 机器学习——线性回归-KNN-决策树(实
    1 import numpy as np 2 import pandas as pd 3 from sklearn.linear_model import LinearRegression 4 from sklearn.preproc...
    99+
    2023-01-30
    线性 机器 决策树
  • 机器学习之决策树算法怎么实现
    决策树是一种常用的机器学习算法,主要用于分类和回归问题。下面是决策树算法的实现步骤:1. 数据预处理:将原始数据进行清洗和转换,包括...
    99+
    2023-10-11
    机器学习
  • Python学习教程:决策树算法(三)sklearn决策树实战
    前面有跟大家出过两期关于决策树算法的Python学习教程,伙伴们学了学了,今天来点实际的吧,实践一把!做个巩固!Python有一个著名的机器学习框架,叫sklearn。我们可以用sklearn来运行前面说到的赖床的例子。不过在这之前,我们需...
    99+
    2023-06-02
  • python机器学习基础决策树与随机森林概率论
    目录一、决策树原理概述1.决策树原理2.信息论①信息熵②决策树的分类依据③其他决策树使用的算法④决策树API二、决策树算法案例1.案例概述2.数据处理3.特征工程4.使用决策树进行预...
    99+
    2024-04-02
  • Python机器学习应用之决策树分类实例详解
    目录一、数据集二、实现过程1 数据特征分析2 利用决策树模型在二分类上进行训练和预测3 利用决策树模型在多分类(三分类)上进行训练与预测三、KEYS1 构建过程2 划分选择3 重要参...
    99+
    2024-04-02
  • Python机器学习算法之决策树算法的实现与优缺点
    目录1.算法概述2.算法种类3.算法示例4.决策树构建示例5.算法实现步骤 6.算法相关概念7.算法实现代码8.算法优缺点9.算法优化总结1.算法概述 决策树算法是在已知各...
    99+
    2024-04-02
  • Python机器学习应用之基于决策树算法的分类预测篇
    目录一、决策树的特点 1.优点 2.缺点 二、决策树的适用场景 三、demo一、决策树的特点 1.优点 具有很好的解释性,模型可以生成可以理解的规则。可以发现特征的重要程度。模型...
    99+
    2024-04-02
  • web安全之机器学习入门——3.2 决策
    目录 简介 决策树简单用法 决策树检测P0P3爆破 决策树检测FTP爆破 随机森林检测FTP爆破   简介 决策树和随机森林算法是最常见的分类算法; 决策树,判断的逻辑很多时候和人的思维非常接近。 随机森林算法,利用多棵决策树对样本进行...
    99+
    2023-01-31
    入门 机器 web
  • 机器学习中的Python问题及解决策略
    机器学习是当前最热门的技术领域之一,而Python作为一种简洁、灵活、易于学习的编程语言,成为了机器学习领域最受欢迎的工具之一。然而,在机器学习中使用Python过程中,总会遇到一些问题和挑战。本文将介绍一些常见的机器学习中使用Python...
    99+
    2023-10-22
    机器学习 Python 解决策略
  • 机器学习
    由于工作原因,机器学习相关核心文章无法发布,对机器学习感兴趣的,随时欢迎私聊我。 人工智能(机器学习)学习之路推荐 《机器学习实战》-机器学习基础 《机器学习实战》-k近邻算法 《机器学习实战》-决策树 《机器学习实战》-线性...
    99+
    2023-01-31
    机器
  • 机器学习:无监督学习
    文章目录 线性学习方法聚类ClusteringKmeansHAC 分布表示降维PCAMatrix FactorizationManifold LearningLLELaplacian Eigenmapst-SEN ...
    99+
    2023-08-30
    机器学习 无监督学习
  • C++技术中的机器学习:使用C++实现机器学习算法的代码优化策略
    优化 c++++ 中的机器学习代码需要采用以下策略:使用高效的数据结构,如 std::vector 和 std::map。避免不必要的复制,使用引用和指针。利用并行处理,使用 openm...
    99+
    2024-05-11
    机器学习 c++ 标准库
  • Python机器学习:6本机器学习书籍推
    机器学习是实现人工智能的一种途径,它和数据开掘有一定的相似性,也是一门多领域交叉学科,触及概率论、核算学、逼近论、凸剖析、核算复杂性理论等多门学科。对比于数据开掘从大数据之间找互相特性而言,机器学习愈加注重算法的设计,让核算机可以白动地从...
    99+
    2023-01-31
    机器 书籍 Python
  • 【机器学习】XGBoost
    1.什么是XGBoost         XGBoost(eXtreme Gradient Boosting)极度梯度提升树,属于集成学习中的boosting框架算法。对于提升树,简单说就是一个模型表现不好,继续按照原来模型表现不好的那部分...
    99+
    2023-09-05
    机器学习 人工智能 python
  • 机器学习---sklearn
    1.Sklearn简介 sklearn (全称 Scikit-Learn) 是基于 Python 语言的机器学习工具,Sklea是处理机器学习 (有监督学习和无监督学习) 的包。它建立在 NumPy...
    99+
    2023-09-01
    sklearn 机器学习 python
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作