返回顶部
首页 > 资讯 > 后端开发 > Python >机器学习——线性回归
  • 593
分享到

机器学习——线性回归

线性机器 2023-01-30 22:01:26 593人浏览 薄情痞子

Python 官方文档:入门教程 => 点击学习

摘要

1 from sklearn.externals import joblib 2 from sklearn.model_selection import train_test_split 3 from sklearn.

 1 from sklearn.externals import joblib
 2 from sklearn.model_selection import train_test_split
 3 from sklearn.datasets import load_boston
 4 from sklearn.preprocessing import StandardScaler
 5 from sklearn.linear_model import LinearRegression
 6 from sklearn.metrics import r2_score
 7 from sklearn import neighbors
 8 import pandas as pd
 9 import numpy as np
10 import seaborn as sns
11 import matplotlib.pyplot as plt
12 import sklearn.preprocessing as sp
13 import sklearn.pipeline as pl

小知识

1 # np.column_stack:取行排列数组
2 # np.vstack:取列排列数组
3 # a = np.array([1,2])
4 # b = np.array([3,4])
5 # print(np.vstack((a,b)))
6 # array([[1, 2],[3, 4]])
7 # print(np.column_stack((a,b)))
8 # array([[1, 3],[2, 4]])
1 # 获取波士顿房价数据
2 lb = load_boston()
3 # 将房价数据转换为每行包括影响因素和房价的DataFrame
4 df = pd.DataFrame(np.column_stack((lb.data, lb.target)),
5                   columns=['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD',
6                            'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV'])
7 cols = ['LSTAT', 'INDUS', 'NOX', 'RM', 'MEDV']
8 print(df)
9 print(df[cols])
 1 def pairplot_analyse():
 2     '''
 3     style:whitegrid-白色网格图   darkgrid-黑色网格图  ticks-散点图   dark white
 4     context:notebook    paper   talk    poster      # size: paper < talk < poster < notebook
 5     palette:调色板
 6     kind:使用回归
 7     diag_kind:改变对角图
 8     markers:改变点形状
 9     :return:
10     '''
11     sns.set(style='dark', context='notebook')
12     sns.pairplot(df[cols], height=2, palette='husl', kind='reg', diag_kind='kde', markers='+')
13     plt.tight_layout()
14     plt.show()
 1 def heatmap_analyse():
 2     '''
 3     cbar:柱子
 4     annot:标记
 5     square:方形
 6     fmt:数据格式
 7     yticklabels:y轴标签
 8     xticklabels:x轴标签
 9     :return:
10     '''
11     # 计算皮尔逊相关系数
12     corr = np.corrcoef(df[cols].values.T)
13     # 生成热点图
14     hm = sns.heatmap(corr, cbar=True, annot=True, square=True, fmt='.2f', annot_kws={'size': 15}, yticklabels=cols,
15                      xticklabels=cols)
16     plt.show()

 

回归方法是一种对数值型连续随机变量进行预测和建模的监督学习算法。使用案例一般包括房价预测、股票走势或测试成绩等连续变化的案例;

回归任务的特点是标注的数据集具有数值型的目标变量。也就是说,每一个观察样本都有一个数值型的标注真值以监督算法。

 1 def bostn_linear():
 2     '''
 3     线性回归直接预测房子价格
 4     :return:
 5     '''
 6 
 7     # 获取数据
 8     lb = load_boston()
 9 
10     # 分割数据集为训练集和测试集 test_size:分割比例
11     x_train, x_test, y_train, y_test = train_test_split(lb.data, lb.target, test_size=0.25)
12 
13     # print(y_train, y_test)
14     # 特征值和目标值是都必须进行标准化处理,实例化两个标准化api
15     std_x = StandardScaler()
16 
17     x_train = std_x.fit_transfORM(x_train)
18     # 用转化训练集的标准归一化测试集:上是fit_transform,下是transform
19     x_test = std_x.transform(x_test)
20 
21     # 目标值
22     std_y = StandardScaler()
23     # -1表示自动识别行数
24     y_train = std_y.fit_transform(y_train.reshape(-1, 1))
25     y_test = std_y.transform(y_test.reshape(-1, 1))
26 
27     # estimator
28     # 正规方程求解方式预测结果
29     # 创建线性回归对象
30     lr = LinearRegression()
31     # 训练数据
32     lr.fit(x_train, y_train)
33     print(lr.coef_)  # 权值
34 
35     # 保存训练好的模型
36     joblib.dump(lr, './test.pkl')
37 
38     # 预测测试集的房子价格
39     # y_lr_predict = std_y.inverse_transform(lr.predict(x_test))
40     orgin = std_y.inverse_transform(y_test[3])  # 转换成原格式
41     print('orgin value is:::::', orgin)
42     y_lr_predict = std_y.inverse_transform(lr.predict(np.array([x_test[3]])))  # predict参数是二维数组
43 
44     print('正规方程测试集里面每个房子的预测价格:', y_lr_predict)
45     # print('正规方程R2评分:', r2_score(std_y.inverse_transform(y_test), y_lr_predict))
46     # print('正规方程R2评分:', r2_score(orgin, y_lr_predict))     #r2_score,参数1:原测试数据,参数2:预测数据

 

 1 def log_fit():
 2     x = np.linspace(0, 20, 50)
 3     y = x ** 3 + np.random.random(50, ) * 100
 4     # pf = sp.PolynomialFeatures(3)
 5 
 6     lr = LinearRegression()
 7     # modle = pl.make_pipeline(pf,lr)
 8     lr.fit(x.reshape(-1, 1), y)
 9     x_predict = lr.predict(x.reshape(-1, 1))
10     print(x_predict)
11 
12     plt.scatter(x, y)  # 曲线:原曲线
13     plt.scatter(x, x_predict, c='r')  # 直线:预测曲线
14     plt.show()
 1 def test_fj():
 2     X = np.array([[500, 3, 0.3], [1000, 1, 0.6], [750, 2, 0.3], [600, 5, 0.2], [1200, 1, 0.6]], dtype=float)
 3     Y = np.array([10000, 9000, 8000, 12000, 8500], dtype=float)
 4 
 5     x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.25)
 6     print(x_train, x_test)
 7     print('===================================================')
 8     print(y_train, y_test)
 9 
10     std_x = StandardScaler()
11     x_train = std_x.fit_transform(x_train)
12     x_test = std_x.transform(x_test)
13 
14     std_y = StandardScaler()
15     y_train = std_y.fit_transform(y_train.reshape(-1, 1))
16     y_test = std_y.transform(y_test.reshape(-1, 1))
17 
18     lr = LinearRegression()
19     lr.fit(x_train, y_train)
20     print(lr.coef_)
21 
22     # orign = std_y.inverse_transform(y_test[1])
23     # print('orign is value:::::',orign)
24     # y_lr_predict = std_y.inverse_transform(lr.predict(np.array([x_test[1]])))
25     y_lr_predict = std_y.inverse_transform(lr.predict(x_test))
26 
27     print('房价:', y_lr_predict)
28     print('评分:', r2_score(std_y.inverse_transform(y_test), y_lr_predict))
29 
30 
31 def price_predict():
32     # 数据有三个特征:距离地铁距离、附近小学、小区绿化率
33     X = np.array([[500, 3, 0.3], [1000, 1, 0.6], [750, 2, 0.3], [600, 5, 0.2], [1200, 1, 0.6]], dtype=float)
34     # 具有三个特征的房屋对应的房价
35     Y = np.array([10000, 9000, 8000, 12000, 8500], dtype=float)
36 
37     std_x = StandardScaler()
38     x_train = std_x.fit_transform(X)
39 
40     std_y = StandardScaler()
41     y_train = std_y.fit_transform(Y.reshape(-1, 1))
42     # 构建线性预测模型
43     lr = LinearRegression()
44     # 模型在历史数据上进行训练,Y.reshape(-1,1)将Y变为二维数组,fit函数参数要求是二维数组
45     lr.fit(x_train, y_train.reshape(-1, 1))
46     # 使用训练模型预测新房屋价格
47     distance = input('请输入新房屋距离地铁的距离:')
48     school = input('请输入附近小学数量:')
49     green = input('请输入小区绿化率:')
50     x_predict = std_x.transform(np.array([[distance, school, green]], dtype=float))
51     print(std_y.inverse_transform(lr.predict(x_predict)))
52     # print(lr.predict(np.array([[distance, school, green]], dtype=float)))
53     # print(lr.predict(np.array([[1300, 3, 0.4]])))
54 
55 
56 if __name__ == '__main__':
57     pairplot_analyse()
58     # heatmap_analyse()
59     # bostn_linear()
60     # log_fit()
61     # test_fj()
62     # price_predict()
63     pass

 

 线性回归的几个特点: 
1. 建模速度快,不需很复杂的计算,数据量大的情况下依然运行速度很快; 
2. 可以根据系数给出每个变量的理解和解释 ;
3. 对异常值敏感。

 

--结束END--

本文标题: 机器学习——线性回归

本文链接: https://lsjlt.com/news/179857.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • 机器学习-线性回归
      ~~~不积跬步,无以至千里~~~ 为了更好的学习线性回归,首先复习一次函数的特性:     什么是线性回归? 假设现在有一些数据点,我们利用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作为回归,如下图所示:  ...
    99+
    2023-01-30
    线性 机器
  • 机器学习——线性回归
    1 from sklearn.externals import joblib 2 from sklearn.model_selection import train_test_split 3 from sklearn....
    99+
    2023-01-30
    线性 机器
  • 【机器学习】线性回归
    Model Representation 1、问题描述2、表示说明3、数据绘图4、模型函数5、预测总结附录 1、问题描述 一套 1000 平方英尺 (sqft) 的房屋售价为300,000美元,一套 2000 平方英尺的房屋...
    99+
    2023-08-23
    机器学习 线性回归 人工智能
  • python机器学习之线性回归详解
    目录一、python机器学习–线性回归二、OLS线性回归2.1 Ordinary Least Squares 最小二乘法2.2 OLS线性回归的代码实现三、梯度下降算法3.1 GDL...
    99+
    2024-04-02
  • 机器学习——线性回归-KNN-决策树(实
    1 import numpy as np 2 import pandas as pd 3 from sklearn.linear_model import LinearRegression 4 from sklearn.preproc...
    99+
    2023-01-30
    线性 机器 决策树
  • 机器学习线性回归算法怎么实现
    实现机器学习线性回归算法一般需要以下步骤:1. 导入所需的库:例如,numpy用于数值计算,matplotlib用于可视化数据等。2...
    99+
    2023-09-21
    机器学习
  • Python 机器学习之线性回归详解分析
    为了检验自己前期对机器学习中线性回归部分的掌握程度并找出自己在学习中存在的问题,我使用C语言简单实现了单变量简单线性回归。 本文对自己使用C语言实现单变量线性回归过程中遇到的问题和心...
    99+
    2024-04-02
  • python机器学习基础线性回归与岭回归算法详解
    目录一、什么是线性回归1.线性回归简述2.数组和矩阵数组矩阵3.线性回归的算法二、权重的求解1.正规方程2.梯度下降三、线性回归案例1.案例概述2.数据获取3.数据分割4.数据标准化...
    99+
    2024-04-02
  • 机器学习(一):线性回归之最小二乘法
    文章目录 专栏导读 1、线性回归简介 2、最小二乘法原理 3、实战案例 专栏导读 ✍ 作者简介:i阿极,CSDN Python领域新星创作者,专注于分享python领域知...
    99+
    2023-09-05
    机器学习 线性回归 python 最小二乘法
  • 机器学习(二):线性回归之梯度下降法
    文章目录 专栏导读 1、梯度下降法原理 2、梯度下降法原理代码实现 3、sklearn内置模块实现 专栏导读 ✍ 作者简介:i阿极,CSDN Python领域新星创作者,...
    99+
    2023-09-07
    机器学习 线性回归 python 梯度下降法
  • Python中怎么创建线性回归机器学习模型
    Python中怎么创建线性回归机器学习模型,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。线性回归机器学习模型1.要使用的数据集由于线性回归是我们在本文中学习的第一个机器学习模型...
    99+
    2023-06-16
  • 机器学习线性回归算法的优缺点是什么
    线性回归是一种常用的机器学习算法,其优点和缺点如下:优点:1. 简单易用:线性回归是一种简单的建模方法,易于理解和实施。2. 计算效...
    99+
    2023-09-21
    机器学习
  • Python机器学习之逻辑回归
    目录一、题目二、目的三、平台四、基本原理4.1 逻辑回归4.2 损失函数五、实验步骤一、题目 1.主题:逻辑回归 2.描述:假设你是某大学招生主管,你想根据两次考试的结果决定每个申请...
    99+
    2024-04-02
  • 线性回归
    传送门:人工智能视频列表-尚学堂,点开任意一个之后会发现他们会提供系列课程整合到一起的百度网盘下载,包括视频+代码+资料,都是免费的 这里:博客园小技巧,我觉得这个很好玩,可以拿来用。 对于机器学习、深度学习的什么介绍,百度吧,有很多,这...
    99+
    2023-01-30
    线性
  • 机器学习实验——单变量线性回归(披萨价格预测问题)
    实验内容 假设某披萨店的披萨价格和披萨直径之间有下列数据关系: 训练样本直径(英寸)价格(美元)1672893101341417.551818 根据上面的训练数据,预测12英寸的披萨的可能售价。 1、...
    99+
    2023-09-30
    机器学习 线性回归 python
  • python机器学习Logistic回归原理推导
    目录前言Logistic回归原理与推导sigmoid函数目标函数梯度上升法Logistic回归实践数据情况训练算法算法优缺点前言 Logistic回归涉及到高等数学,线性代数,概率论...
    99+
    2024-04-02
  • pytorch机器学习softmax回归的简洁实现
    目录初始化模型参数重新审视softmax的实现优化算法通过深度学习框架的高级API也能更方便地实现分类模型。让我们继续使用Fashion-MNIST数据集,并保持批量大小为256。 ...
    99+
    2024-04-02
  • python机器学习Logistic回归原理是什么
    这篇“python机器学习Logistic回归原理是什么”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“python机器学习L...
    99+
    2023-07-02
  • 【数学建模】-多元线性回归分析
    文章目录 回归的思想回归分析:研究X和Y之间相关性的分析。相关性因变量Y自变量X 回归分析的使命回归分析的分类数据的分类一元线性回归对于线性的理解回归系数的解释内生性的探究内生性...
    99+
    2023-10-05
    线性回归 回归 机器学习 matlab
  • Python可视化学习之seaborn绘制线型回归曲线
    目录本文速览1、绘图数据准备2、seaborn.regplotregplot默认参数线型回归图分别设置点和拟合线属性置信区间(confidence interval)设置拟合线延伸与...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作