返回顶部
首页 > 资讯 > 后端开发 > Python >python机器学习Logistic回归原理推导
  • 926
分享到

python机器学习Logistic回归原理推导

2024-04-02 19:04:59 926人浏览 安东尼

Python 官方文档:入门教程 => 点击学习

摘要

目录前言LoGIStic回归原理与推导sigmoid函数目标函数梯度上升法Logistic回归实践数据情况训练算法算法优缺点前言 Logistic回归涉及到高等数学,线性代数,概率论

前言

Logistic回归涉及到高等数学,线性代数,概率论,优化问题。本文尽量以最简单易懂的叙述方式,以少讲公式原理,多讲形象化案例为原则,给读者讲懂Logistic回归。如对数学公式过敏,引发不适,后果自负。

Logistic回归原理与推导

Logistic回归中虽然有回归的字样,但该算法是一个分类算法,如图所示,有两类数据(红点和绿点)分布如下,如果需要对两类数据进行分类,我们可以通过一条直线进行划分(w0 * x0 + w1 * x1+w2 * x2)。当新的样本(x1,x2)需要预测时,带入直线函数中,函数值大于0,则为绿色样本(正样本),否则为红样本(负样本)。

推广到高维空间中,我们需要得到一个超平面(在二维是直线,在三维是平面,在n维是n-1的超平面)切分我们的样本数据,实际上也就是求该超平面的W参数,这很类似于回归,所以取名为Logistic回归。

sigmoid函数

当然,我们不直接使用z函数,我们需要把z值转换到区间[0-1]之间,转换的z值就是判断新样本属于正样本的概率大小。 我们使用sigmoid函数完成这个转换过程,公式如下。通过观察sigmoid函数图,如图所示,当z值大于0时,σ值大于0.5,当z值小于0时,σ值小于于0.5。利用sigmoid函数,使得Logistic回归本质上是一个基于条件概率的判别模型。

目标函数

其实,我们现在就是求W,如何求W呢,我们先看下图,我们都能看出第二个图的直线切分的最好,换句话说,能让这些样本点离直线越远越好,这样对于新样本的到来,也具有很好的划分,那如何用公式表示并计算这个目标函数呢?

这时就需要这个目标函数的值最大,以此求出θ。

梯度上升法

在介绍梯度上升法之前,我们看一个中学知识:求下面函数在x等于多少时,取最大值。

解:求f(x)的导数:2x,令其为0,求得x=0时,取最大值为0。但在函数复杂时,求出导数也很难计算函数的极值,这时就需要使用梯度上升法,通过迭代,一步步逼近极值,公式如下,我们顺着导数的方向(梯度)一步步逼近。

利用梯度算法计算该函数的x值:

def f(x_old):
         return -2*x_old
def cal():
     x_old  = 0
     x_new = -6
     eps = 0.01
     presision = 0.00001
     while abs(x_new-x_old)>presision:
        x_old=x_new
        x_new=x_old+eps*f(x_old)
     return x_new
-0.0004892181072978443

Logistic回归实践

数据情况

读入数据,并绘图显示:

def loadDataSet():
    dataMat = [];labelMat = []
    fr = open('数据/Logistic/TestSet.txt')
    for line in fr.readlines():
        lineArr = line.strip().split()
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
        labelMat.append(int(lineArr[2]))
    return dataMat, labelMat

训练算法

利用梯度迭代公式,计算W:

def sigmoid(inX):
    return 1.0/(1 + np.exp(-inX))
def gradAscent(dataMatIn, labelMatIn):
    dataMatrix = np.mat(dataMatIn)
    labelMat = np.mat(labelMatIn).transpose()
    m,n = np.shape(dataMatrix)
    alpha = 0.001
    maxCycles = 500
    weights = np.ones((n,1))
    for k in range(maxCycles):
        h = sigmoid(dataMatrix * weights)
        error = labelMat - h
        weights = weights + alpha * dataMatrix.transpose() * error
    return weights

通过计算的weights绘图,查看分类结果

算法优缺点

  • 优点:易于理解和计算
  • 缺点:精度不高

以上就是python机器学习Logistic回归原理推导的详细内容,更多关于Python机器学习Logistic回归的资料请关注编程网其它相关文章!

--结束END--

本文标题: python机器学习Logistic回归原理推导

本文链接: https://lsjlt.com/news/118669.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • python机器学习Logistic回归原理推导
    目录前言Logistic回归原理与推导sigmoid函数目标函数梯度上升法Logistic回归实践数据情况训练算法算法优缺点前言 Logistic回归涉及到高等数学,线性代数,概率论...
    99+
    2024-04-02
  • python机器学习Logistic回归原理是什么
    这篇“python机器学习Logistic回归原理是什么”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“python机器学习L...
    99+
    2023-07-02
  • 机器学习实战:Python基于Logistic逻辑回归进行分类预测(一)
    目录 1 前言1.1 Logistic回归的介绍1.2 Logistic回归的应用 2 iris数据集数据处理2.1 导入函数2.2 导入数据2.3 简单数据查看 3 可视化3.1...
    99+
    2023-09-26
    python 回归
  • Python机器学习之逻辑回归
    目录一、题目二、目的三、平台四、基本原理4.1 逻辑回归4.2 损失函数五、实验步骤一、题目 1.主题:逻辑回归 2.描述:假设你是某大学招生主管,你想根据两次考试的结果决定每个申请...
    99+
    2024-04-02
  • 机器学习-线性回归
      ~~~不积跬步,无以至千里~~~ 为了更好的学习线性回归,首先复习一次函数的特性:     什么是线性回归? 假设现在有一些数据点,我们利用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作为回归,如下图所示:  ...
    99+
    2023-01-30
    线性 机器
  • 机器学习——线性回归
    1 from sklearn.externals import joblib 2 from sklearn.model_selection import train_test_split 3 from sklearn....
    99+
    2023-01-30
    线性 机器
  • 【机器学习】线性回归
    Model Representation 1、问题描述2、表示说明3、数据绘图4、模型函数5、预测总结附录 1、问题描述 一套 1000 平方英尺 (sqft) 的房屋售价为300,000美元,一套 2000 平方英尺的房屋...
    99+
    2023-08-23
    机器学习 线性回归 人工智能
  • python机器学习之线性回归详解
    目录一、python机器学习–线性回归二、OLS线性回归2.1 Ordinary Least Squares 最小二乘法2.2 OLS线性回归的代码实现三、梯度下降算法3.1 GDL...
    99+
    2024-04-02
  • 机器学习:基于逻辑回归(Logistic Regression)对股票客户流失预测分析
    基于逻辑回归对股票客户流失预测分析 作者:i阿极 作者简介:Python领域新星作者、多项比赛获奖者:博主个人首页 😊😊😊如果觉得文章不错或能...
    99+
    2023-08-31
    机器学习 逻辑回归 python 原力计划
  • python机器学习基础线性回归与岭回归算法详解
    目录一、什么是线性回归1.线性回归简述2.数组和矩阵数组矩阵3.线性回归的算法二、权重的求解1.正规方程2.梯度下降三、线性回归案例1.案例概述2.数据获取3.数据分割4.数据标准化...
    99+
    2024-04-02
  • Python机器学习:6本机器学习书籍推
    机器学习是实现人工智能的一种途径,它和数据开掘有一定的相似性,也是一门多领域交叉学科,触及概率论、核算学、逼近论、凸剖析、核算复杂性理论等多门学科。对比于数据开掘从大数据之间找互相特性而言,机器学习愈加注重算法的设计,让核算机可以白动地从...
    99+
    2023-01-31
    机器 书籍 Python
  • Python 机器学习之线性回归详解分析
    为了检验自己前期对机器学习中线性回归部分的掌握程度并找出自己在学习中存在的问题,我使用C语言简单实现了单变量简单线性回归。 本文对自己使用C语言实现单变量线性回归过程中遇到的问题和心...
    99+
    2024-04-02
  • 机器学习:逻辑回归模型算法原理(附案例实战)
    机器学习:逻辑回归模型算法原理 作者:i阿极 作者简介:Python领域新星作者、多项比赛获奖者:博主个人首页 😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论📒+关注哦!👍👍👍 ...
    99+
    2023-10-08
    机器学习 逻辑回归 python 算法 开发语言
  • python机器学习逻辑回归随机梯度下降法
    目录写在前面随机梯度下降法参考文献写在前面 随机梯度下降法就在随机梯度上。意思就是说当我们在初始点时想找到下一点的梯度,这个点是随机的。全批量梯度下降是从一个点接着一点是有顺序的,全...
    99+
    2024-04-02
  • Python机器学习之逻辑回归的示例分析
    这篇文章主要介绍了Python机器学习之逻辑回归的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。Python主要用来做什么Python主要应用于:1、Web开发;2、...
    99+
    2023-06-15
  • python机器基础逻辑回归与非监督学习
    目录一、逻辑回归1.模型的保存与加载2.逻辑回归原理①逻辑回归的输入②sigmoid函数③逻辑回归的损失函数④逻辑回归特点3.逻辑回归API4.逻辑回归案例①案例概述②具体流程5.逻...
    99+
    2024-04-02
  • Python中怎么创建线性回归机器学习模型
    Python中怎么创建线性回归机器学习模型,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。线性回归机器学习模型1.要使用的数据集由于线性回归是我们在本文中学习的第一个机器学习模型...
    99+
    2023-06-16
  • pytorch机器学习softmax回归的简洁实现
    目录初始化模型参数重新审视softmax的实现优化算法通过深度学习框架的高级API也能更方便地实现分类模型。让我们继续使用Fashion-MNIST数据集,并保持批量大小为256。 ...
    99+
    2024-04-02
  • 机器学习——线性回归-KNN-决策树(实
    1 import numpy as np 2 import pandas as pd 3 from sklearn.linear_model import LinearRegression 4 from sklearn.preproc...
    99+
    2023-01-30
    线性 机器 决策树
  • 机器学习线性回归算法怎么实现
    实现机器学习线性回归算法一般需要以下步骤:1. 导入所需的库:例如,numpy用于数值计算,matplotlib用于可视化数据等。2...
    99+
    2023-09-21
    机器学习
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作