返回顶部
首页 > 资讯 > 后端开发 > Python >Python实现遗传算法(虚拟机中运行)
  • 945
分享到

Python实现遗传算法(虚拟机中运行)

2024-04-02 19:04:59 945人浏览 安东尼

Python 官方文档:入门教程 => 点击学习

摘要

目录(一)问题(二)代码(三)运行结果(四)结果描述(一)问题 遗传算法求解正方形拼图游戏 (二)代码 #!/usr/bin/env python # -*- coding: u

(一)问题

遗传算法求解正方形拼图游戏

(二)代码


#!/usr/bin/env python
# -*- coding: utf-8 -*-
 
from PIL import Image, ImageDraw
import os
import GC
import random as r
import minpy.numpy as np
 
class Color(object):
    '''
    定义颜色的类,这个类包含r,g,b,a表示颜色属性
    '''
    def __init__(self):
        self.r = r.randint(0, 255)
        self.g = r.randint(0, 255)
        self.b = r.randint(0, 255)
        self.a = r.randint(95, 115)
 
 
def mutate_or_not(rate):
    '''
    生成随机数,判断是否需要变异
    '''
    return True if rate > r.random() else False
 
 
class Triangle(object):
    '''
    定义三角形的类
    属性:
            ax,ay,bx,by,cx,cy:表示每个三角形三个顶点的坐标
            color 			 : 表示三角形的颜色
            img_t			 : 三角形绘制成的图,用于合成图片
    方法:
            mutate_from(self, parent):      从父代三角形变异
            draw_it(self, size=(256, 256)): 绘制三角形
    '''
 
 
    max_mutate_rate = 0.08
    mid_mutate_rate = 0.3
    min_mutate_rate = 0.8
 
 
    def __init__(self, size=(255, 255)):
        t = r.randint(0, size[0])
        self.ax = r.randint(0, size[0])
        self.ay = r.randint(0, size[1])
        self.bx = self.ax+t
        self.by = self.ay
        self.cx = self.ax+t
        self.cy = self.ay-t
        self.dx = self.ax
        self.dy = self.ay-t
        self.color = Color()
        self.img_t = None
 
 
    def mutate_from(self, parent):
        if mutate_or_not(self.max_mutate_rate):
            t = r.randint(0, 255)
            self.ax = r.randint(0, 255)
            self.ay = r.randint(0, 255)
            self.bx = self.ax + t
            self.by = self.ay
            self.dx = self.ax
            self.dy = self.ay - t
            self.cx = self.ax + t
            self.cy = self.ay - t
        if mutate_or_not(self.mid_mutate_rate):
            t = min(max(0, parent.ax + r.randint(-15, 15)), 255)
            self.ax = min(max(0, parent.ax + r.randint(-15, 15)), 255)
            self.ay = min(max(0, parent.ay + r.randint(-15, 15)), 255)
            self.bx = self.ax + t
            self.by = self.ay
            self.dx = self.ax
            self.dy = self.ay - t
            self.cx = self.ax + t
            self.cy = self.ay - t
        if mutate_or_not(self.min_mutate_rate):
            t = min(max(0, parent.ax + r.randint(-3, 3)), 255)
            self.ax = min(max(0, parent.ax + r.randint(-3, 3)), 255)
            self.ay = min(max(0, parent.ay + r.randint(-3, 3)), 255)
            self.bx = self.ax + t
            self.by = self.ay
            self.dx = self.ax
            self.dy = self.ay - t
            self.cx = self.ax + t
            self.cy = self.ay - t
 
 
                # color
        if mutate_or_not(self.max_mutate_rate):
            self.color.r = r.randint(0, 255)
        if mutate_or_not(self.mid_mutate_rate):
            self.color.r = min(max(0, parent.color.r + r.randint(-30, 30)), 255)
        if mutate_or_not(self.min_mutate_rate):
            self.color.r = min(max(0, parent.color.r + r.randint(-10, 10)), 255)
 
        if mutate_or_not(self.max_mutate_rate):
            self.color.g = r.randint(0, 255)
        if mutate_or_not(self.mid_mutate_rate):
            self.color.g = min(max(0, parent.color.g + r.randint(-30, 30)), 255)
        if mutate_or_not(self.min_mutate_rate):
            self.color.g = min(max(0, parent.color.g + r.randint(-10, 10)), 255)
 
        if mutate_or_not(self.max_mutate_rate):
            self.color.b = r.randint(0, 255)
        if mutate_or_not(self.mid_mutate_rate):
            self.color.b = min(max(0, parent.color.b + r.randint(-30, 30)), 255)
        if mutate_or_not(self.min_mutate_rate):
            self.color.b = min(max(0, parent.color.b + r.randint(-10, 10)), 255)
        # alpha
        if mutate_or_not(self.mid_mutate_rate):
            self.color.a = r.randint(95, 115)
        # if mutate_or_not(self.mid_mutate_rate):
        #     self.color.a = min(max(0, parent.color.a + r.randint(-30, 30)), 255)
        # if mutate_or_not(self.min_mutate_rate):
        #     self.color.a = min(max(0, parent.color.a + r.randint(-10, 10)), 255)
 
 
    def draw_it(self, size=(256, 256)):
        self.img_t = Image.new('RGBA', size)
        draw = ImageDraw.Draw(self.img_t)
        draw.polyGon([(self.ax, self.ay),
                      (self.bx, self.by),
                      (self.cx, self.cy),
                      (self.dx, self.dy)],
                     fill=(self.color.r, self.color.g, self.color.b, self.color.a))
        return self.img_t
 
 
class canvas(object):
    '''
    定义每一张图片的类
    属性:
            mutate_rate	 : 变异概率
            size		 : 图片大小
            target_pixels: 目标图片像素值
    方法:
            add_triangles(self, num=1)      : 在图片类中生成num个三角形
            mutate_from_parent(self, parent): 从父代图片对象进行变异
            calc_match_rate(self)			: 计算环境适应度
            draw_it(self, i)				: 保存图片
    '''
 
 
    mutate_rate = 0.01
    size = (256, 256)
    target_pixels = []
 
 
    def __init__(self):
        self.triangles = []
        self.match_rate = 0
        self.img = None
 
 
    def add_triangles(self, num=1):
        for i in range(0, num):
            triangle = Triangle()
            self.triangles.append(triangle)
 
 
    def mutate_from_parent(self, parent):
        flag = False
        for triangle in parent.triangles:
            t = triangle
            if mutate_or_not(self.mutate_rate):
                flag = True
                a = Triangle()
                a.mutate_from(t)
                self.triangles.append(a)
                continue
            self.triangles.append(t)
        if not flag:
            self.triangles.pop()
            t = parent.triangles[r.randint(0, len(parent.triangles) - 1)]
            a = Triangle()
            a.mutate_from(t)
            self.triangles.append(a)
 
 
    def calc_match_rate(self):
        if self.match_rate > 0:
            return self.match_rate
        self.match_rate = 0
        self.img = Image.new('RGBA', self.size)
        draw = ImageDraw.Draw(self.img)
        draw.polygon([(0, 0), (0, 255), (255, 255), (255, 0)], fill=(255, 255, 255, 255))
        for triangle in self.triangles:
            self.img = Image.alpha_composite(self.img, triangle.img_t or triangle.draw_it(self.size))    
        # 与下方代码功能相同,此版本便于理解但效率低
        # pixels = [self.img.getpixel((x, y)) for x in range(0, self.size[0], 2) for y in range(0, self.size[1], 2)]
        # for i in range(0, min(len(pixels), len(self.target_pixels))):
        #     delta_red   = pixels[i][0] - self.target_pixels[i][0]
        #     delta_green = pixels[i][1] - self.target_pixels[i][1]
        #     delta_blue  = pixels[i][2] - self.target_pixels[i][2]
        #     self.match_rate += delta_red   * delta_red   + \
        #                        delta_green * delta_green + \
        #                        delta_blue  * delta_blue
        arrs = [np.array(x) for x in list(self.img.split())]    # 分解为RGBA四通道
        for i in range(3):                                      # 对RGB通道三个矩阵分别与目标图片相应通道作差取平方加和评估相似度
            self.match_rate += np.sum(np.square(arrs[i]-self.target_pixels[i]))[0]
 
    def draw_it(self, i):
        #self.img.save(os.path.join(PATH, "%s_%d_%d_%d.png" % (PREFIX, len(self.triangles), i, self.match_rate)))
        self.img.save(os.path.join(PATH, "%d.png" % (i)))
 
 
def main():
        global LOOP, PREFIX, PATH, TARGET, TRIANGLE_NUM
        # 声明全局变量
        img = Image.open(TARGET).resize((256, 256)).convert('RGBA')
        size = (256, 256)
        Canvas.target_pixels = [np.array(x) for x in list(img.split())]
        # 生成一系列的图片作为父本,选择其中最好的一个进行遗传
        parentList = []
        for i in range(20):
            print('正在生成第%d个初代个体' % (i))
            parentList.append(Canvas())
            parentList[i].add_triangles(TRIANGLE_NUM)
            parentList[i].calc_match_rate()
        parent = sorted(parentList, key=lambda x: x.match_rate)[0]
        del parentList
        gc.collect()
        # 进入遗传算法的循环
        i = 0
        while i < 30000:
            childList = []
            # 每一代从父代中变异出10个个体
            for j in range(10):
                childList.append(Canvas())
                childList[j].mutate_from_parent(parent)
                childList[j].calc_match_rate()
            child = sorted(childList, key=lambda x: x.match_rate)[0]
            # 选择其中适应度最好的一个个体
            del childList
            gc.collect()
            parent.calc_match_rate()
            if i % LOOP == 0:
                print ('%10d parent rate %11d \t child1 rate %11d' % (i, parent.match_rate, child.match_rate))
            parent = parent if parent.match_rate < child.match_rate else child
            # 如果子代比父代更适应环境,那么子代成为新的父代
            # 否则保持原样
            child = None
            if i % LOOP == 0:
                # 每隔LOOP代保存一次图片
                parent.draw_it(i)
                #print(parent.match_rate)
                #print ('%10d parent rate %11d \t child1 rate %11d' % (i, parent.match_rate, child.match_rate))
            i += 1
 
 
'''
定义全局变量,获取待处理的图片名
'''
NAME = input('请输入原图片文件名:')
LOOP = 100
PREFIX = NAME.split('/')[-1].split('.')[0]  # 取文件名
PATH = os.path.abspath('.')  # 取当前路径
PATH = os.path.join(PATH,'results')
TARGET = NAME  # 源图片文件名
TRIANGLE_NUM = 256  # 三角形个数
 
if __name__ == '__main__':
    #print('开始进行遗传算法')
    main()

(三)运行结果

(四)结果描述

  代码是在遗传算法求解三角形火狐拼图改进而来,遗传算法求解正方形拼图游戏只需随机生成一个坐标和一个常数值(作为正方形的边长),通过正方形的性质,可以写出正方形其他三个点的坐标,确定了四个点的坐标之后,进行遗传和变异。

到此这篇关于Python实现遗传算法(虚拟机中运行)的文章就介绍到这了,更多相关Python 遗传算法内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: Python实现遗传算法(虚拟机中运行)

本文链接: https://lsjlt.com/news/158262.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • Python实现遗传算法(虚拟机中运行)
    目录(一)问题(二)代码(三)运行结果(四)结果描述(一)问题 遗传算法求解正方形拼图游戏 (二)代码 #!/usr/bin/env python # -*- coding: u...
    99+
    2024-04-02
  • python实现使用遗传算法进行图片拟合
    目录引言预备知识及准备工作打开图片随机生成生物族群按照生物性状画图对比生物个体和目标图片的相似度保存图片算法主体交叉互换基因突变基因片段易位增加基因片段减少基因片段变异繁殖淘汰拟合示...
    99+
    2024-04-02
  • python如何实现使用遗传算法进行图片拟合
    小编给大家分享一下python如何实现使用遗传算法进行图片拟合,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!引言算法思路假设我们有这样一个生物族群,他们的每个基因片段都是一个个三角形(即只含三个点和颜色信息),他们每个个体...
    99+
    2023-06-29
  • Python怎么实现遗传算法
    这篇文章给大家分享的是有关Python怎么实现遗传算法的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。(一)问题遗传算法求解正方形拼图游戏(二)代码#!/usr/bin/env python# ...
    99+
    2023-06-21
  • python实现高效的遗传算法
    遗传算法属于一种优化算法。 如果你有一个待优化函数,可以考虑次算法。假设你有一个变量x,通过某个函数可以求出对应的y,那么你通过预设的x可求出y_pred,y_pred差距与你需要的...
    99+
    2024-04-02
  • 如何使用Python实现遗传算法
    本篇内容介绍了“如何使用Python实现遗传算法”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!遗传算法是模仿自然界生物进化机制发展起来的随机...
    99+
    2023-07-05
  • Python中怎么实现一个遗传算法框架
    本篇文章给大家分享的是有关Python中怎么实现一个遗传算法框架,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。算法特点以决策变量的编码作为运算对象,使得优化过程借鉴生物学中的概...
    99+
    2023-06-17
  • Python中怎么实现一个简单遗传算法
    今天就跟大家聊聊有关Python中怎么实现一个简单遗传算法,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。遗传算法遗传算法是模仿自然选择过程的优化算法。 他们没有使用"数学技...
    99+
    2023-06-16
  • python如何实现高效的遗传算法
    小编给大家分享一下python如何实现高效的遗传算法,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!遗传算法属于一种优化算法。如果你有一个待优化函数,可以考虑次算法...
    99+
    2023-06-14
  • 怎么用python代码实现遗传算法
    要使用Python代码实现遗传算法,可以按照以下步骤进行操作:1. 定义问题:首先,需要明确要解决的问题是什么,例如优化问题、寻找最...
    99+
    2023-10-10
    python
  • matlab遗传算法怎么实现
    要实现遗传算法(Genetic Algorithm)的MATLAB代码,可以按照以下步骤进行: 初始化种群:生成包含若干个个体(...
    99+
    2023-10-22
    matlab
  • C#中怎么实现一个遗传算法
    这篇文章给大家介绍C#中怎么实现一个遗传算法,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。C#遗传算法实现代码:using System;  using System.Colle...
    99+
    2023-06-17
  • 小白易懂的遗传算法(Python代码实现)
    无约束的遗传算法(最简单的) 最开始真正理解遗传算法,是通过这个博主的讲解,安利给小白们看一看,遗传算法的Python实现(通俗易懂),我觉得博主写的让人特别容易理解,关键是代码也不报错,然后我就照着...
    99+
    2023-09-16
    python numpy 开发语言
  • 使用Python实现遗传算法的完整代码
    目录遗传算法具体步骤:1.2 实验代码1.3 实验结果1.4 实验总结1、如何在算法中实现“优胜劣汰”?2 、如何保证进化一直是在正向进行?3、交叉如何实现?...
    99+
    2023-03-23
    Python 遗传算法 python算法
  • 遗传算法详解及其MATLAB实现
    遗传算法是一种用于优化问题的启发式搜索算法,它模拟自然界中的进化过程,通过遗传、交叉和变异等操作寻找问题的最优解。遗传算法的核心思想...
    99+
    2023-09-14
    MATLAB
  • 使用Python实现的遗传算法 附完整代码
    遗传算法是模仿自然界生物进化机制发展起来的随机全局搜索和优化方法,它借鉴了达尔文的进化论和孟德尔的遗传学说。其本质是一种高效、并行、全局搜索的方法,它能在搜索过程中自动获取和积累有关搜索空间的知识,并自适应的控制搜索过程以求得最优解。遗传算...
    99+
    2023-09-26
    Python 遗传算法 flask Powered by 金山文档
  • Go语言中怎么实现一个遗传算法
    这期内容当中小编将会给大家带来有关Go语言中怎么实现一个遗传算法,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。Go语言坚决拥护组合(composition),同时也很反对继承的做法,在网络上引起了强烈的讨...
    99+
    2023-06-17
  • cPanel虚拟主机上运行Python的
    有些做开发的朋友可能希望在cPanel虚拟主机上执行Python脚本,cPanel服务器默认python是装好的,一般位于/usr/bin/python目录下(可以通过whereis python命令确认下)。下面我们看下如何在c...
    99+
    2023-01-31
    虚拟主机 cPanel Python
  • Matlab实现遗传算法的示例详解
    目录1算法讲解1.1何为遗传算法1.2遗传算法流程描述1.3关于为什么要用二进制码表示个体信息1.4目标函数值与适应值区别1.5关于如何将二进制码转化为变量数值1.6关于代码改进2M...
    99+
    2024-04-02
  • Python地图四色原理的遗传算法着色实现
    目录1 任务需求2 代码实现2.1 基本思路2.3 结果展示总结1 任务需求   首先,我们来明确一下本文所需实现的需求。   现有一个由多个...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作