返回顶部
首页 > 资讯 > 后端开发 > Python >如何用Python数据可视化来分析用户留存率
  • 847
分享到

如何用Python数据可视化来分析用户留存率

2024-04-02 19:04:59 847人浏览 薄情痞子

Python 官方文档:入门教程 => 点击学习

摘要

关于“漏斗图” 漏斗图常用于用户行为的转化率分析,例如通过漏斗图来分析用户购买流程中各个环节的转化率。当然在整个分析过程当中,我们会把流程优化前后的漏斗图放在一起,进行比较分析,得

关于“漏斗图”

漏斗图常用于用户行为的转化率分析,例如通过漏斗图来分析用户购买流程中各个环节的转化率。当然在整个分析过程当中,我们会把流程优化前后的漏斗图放在一起,进行比较分析,得出相关的结论,今天小编就用“matplotlib”、“plotly”以及“pyecharts”这几个模块来为大家演示一下怎么画出好看的漏斗图首先我们先要导入需要用到的模块以及数据,


import matplotlib.pyplot as plt 
import pandas as pd 
df = pd.DataFrame({"环节": ["环节一", "环节二", "环节三", "环节四", "环节五"],  
                   "人数": [1000, 600, 400, 250, 100],  
                   "总体转化率": [1.00, 0.60, 0.40, 0.25, 0.1]}) 


需要用到的数据如下图所示:

matplotlib来制作漏斗图,制作出来的效果可能会稍显简单与粗糙,制作的原理也比较简单,先绘制出水平方向的直方图,然后利用plot.barh()当中的“left”参数将直方图向左移,便能出来类似于漏斗图的模样


y = [5,4,3,2,1] 
x = [85,75,58,43,23] 
x_max = 100 
x_min = 0 
for idx, val in enumerate(x): 
    plt.barh(y[idx], x[idx], left = idx+5) 
plt.xlim(x_min, x_max) 

要绘制出我们想要的想要的漏斗图的模样,代码示例如下


from matplotlib import font_manager as fm 
# funnel chart 
y = [5,4,3,2,1] 
labels = df["环节"].tolist() 
x = df["人数"].tolist() 
x_range = 100 
font = fm.FontProperties(fname="KaiTI.ttf") 
fig, ax = plt.subplots(1, figsize=(12,6)) 
for idx, val in enumerate(x): 
    left = (x_range - val)/2 
    plt.barh(y[idx], x[idx], left = left, color='#808B96', height=.8, edgecolor='black') 
    # label 
    plt.text(50, y[idx]+0.1, labels[idx], ha='center', 
             fontproperties=font, fontsize=16, color='#2A2A2A') 
    # value 
    plt.text(50, y[idx]-0.3, x[idx], ha='center', 
             fontproperties=font, fontsize=16, color='#2A2A2A') 
     
    if idx != len(x)-1: 
        next_left = (x_range - x[idx+1])/2 
        shadow_x = [left, next_left,  
                    100-next_left, 100-left, left] 
        shadow_y = [y[idx]-0.4, y[idx+1]+0.4,  
                    y[idx+1]+0.4, y[idx]-0.4, y[idx]-0.4] 
        plt.plot(shadow_x, shadow_y) 
plt.xlim(x_min, x_max) 
plt.axis('off') 
plt.title('每个环节的流失率', fontproperties=font, loc='center', fontsize=24, color='#2A2A2A') 
plt.show() 

绘制出来的漏斗图如下图所示

当然我们用plotly来绘制的话则会更加的简单一些,代码示例如下


import plotly.express as px 
data = dict(values=[80,73,58,42,23], 
            labels=['环节一', '环节二', '环节三', '环节四', '环节五']) 
fig = px.funnel(data, y='labels', x='values') 
fig.show() 

最后我们用pyecharts模块来绘制一下,当中有专门用来绘制“漏斗图”的方法,我们只需要调用即可


from pyecharts.charts import Funnel 
from pyecharts import options as opts 
from pyecharts.globals import ThemeType 
 
c = ( 
    Funnel(init_opts=opts.InitOpts(width="900px", height="600px",theme = ThemeType.INFOGRAPHIC )) 
    .add( 
        "环节", 
        df[["环节","总体转化率"]].values, 
        sort_="descending", 
        label_opts=opts.LabelOpts(position="inside"), 
    ) 
    .set_global_opts(title_opts=opts.TitleOpts(title="Pyecharts漏斗图", pos_bottom = "90%", pos_left = "center")) 
) 
c.render_notebook() 

我们将数据标注上去之后


c = ( 
    Funnel(init_opts=opts.InitOpts(width="900px", height="600px",theme = ThemeType.INFOGRAPHIC )) 
    .add( 
        "商品", 
        df[["环节","总体转化率"]].values, 
        sort_="descending", 
        label_opts=opts.LabelOpts(position="inside"), 
    ) 
    .set_global_opts(title_opts=opts.TitleOpts(title="Pyecharts漏斗图", pos_bottom = "90%", pos_left = "center")) 
    .set_series_opts(label_opts=opts.LabelOpts(fORMatter="{b}:{c}")) 
) 
c.render_notebook() 

到此这篇关于如何用python数据可视化来分析用户留存率的文章就介绍到这了,更多相关用Python数据可视化来分析用户留存率内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: 如何用Python数据可视化来分析用户留存率

本文链接: https://lsjlt.com/news/136658.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • 如何用Python数据可视化来分析用户留存率
    关于“漏斗图” 漏斗图常用于用户行为的转化率分析,例如通过漏斗图来分析用户购买流程中各个环节的转化率。当然在整个分析过程当中,我们会把流程优化前后的漏斗图放在一起,进行比较分析,得...
    99+
    2024-04-02
  • python数据分析及可视化(十五)数据分析可视化实战篇(抖音用户数据分析、二手房数据分析)
    python数据分析的实战篇,围绕实例的数据展开分析,通过数据操作案例来了解数据分析中的频繁用到的知识内容。 抖音用户数据分析 1.理解数据 数据字段含义 了解数据内容,确保数据来源是正常的,安全合法...
    99+
    2023-09-02
    python 数据分析 开发语言
  • 如何使用Python实现股票数据分析的可视化
    这篇文章主要为大家展示了“如何使用Python实现股票数据分析的可视化”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“如何使用Python实现股票数据分析的可视化”这篇文章吧。一、简介我们知道在购...
    99+
    2023-06-22
  • python数据分析绘图可视化
    前言: 数据分析初始阶段,通常都要进行可视化处理。数据可视化旨在直观展示信息的分析结果和构思,令某些抽象数据具象化,这些抽象数据包括数据测量单位的性质或数量。本章用的程序库matpl...
    99+
    2024-04-02
  • Python疫情数据可视化分析
    目录前言功能函数读取文件更换列名,便于查看全球疫情趋势筛选出中国的数据利用groupby按照省统计确诊死亡治愈病例的总和确诊人数排名前15的国家这里用pyecharts库画图,绘制的...
    99+
    2024-04-02
  • Python数据可视化举例分析
    这篇文章主要介绍“Python数据可视化举例分析”,在日常操作中,相信很多人在Python数据可视化举例分析问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Python数据可视化举例分析”的疑惑有所帮助!接下来...
    99+
    2023-06-16
  • Python数据分析之Matplotlib数据可视化
    目录1.前言2.Matplotlib概念3.Matplotlib.pyplot基本使用3.数据展示3.1如何选择展示方式3.2绘制折线图3.3绘制柱状图3.3.1普通柱状图3.3.2...
    99+
    2024-04-02
  • VUE 数据可视化:数据分析的未来,触手可及
    VUE 的优势 VUE 作为一种现代且流行的 JavaScript 框架,专为构建交互式且复杂的数据可视化界面而设计。其优势包括: 高性能:VUE 采用虚拟 DOM 和增量更新技术,可实现高性能和流畅的交互。 可扩展性:VUE 提供了强...
    99+
    2024-04-02
  • Python数据分析应用之Matplotlib数据可视化详情
    目录简述掌握绘图基础语法与基本参数 掌握pyplot基础语法pyplot中的基础绘图语法包含子图的基础语法调节线条的rc参数调节字体的rc参数分析特征间的关系绘制散点图绘制2000-...
    99+
    2024-04-02
  • 用Python爬取电影数据并可视化分析
      🤵‍♂️ 个人主页:@艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬...
    99+
    2023-08-31
    python 信息可视化 开发语言
  • python如何使用PCA可视化数据
    本篇内容主要讲解“python如何使用PCA可视化数据”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“python如何使用PCA可视化数据”吧!什么是PCA我们先复习一下这个理论。如果你想确切了解...
    99+
    2023-06-19
  • python数据分析绘图可视化实例分析
    本篇内容介绍了“python数据分析绘图可视化实例分析”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!前言:数据分析初始阶段,通常都要进行可视...
    99+
    2023-07-02
  • 如何使用Python对网易云歌单数据分析及可视化
    项目概述1.1项目来源网易云音乐是一款由网易开发的音乐产品,是网易杭州研究院的成果 ,依托专业音乐人、DJ、好友推荐及社交功能,在线音乐服务主打歌单、社交、大牌推荐和音乐指纹,以歌单、DJ节目、社交、地理位置为核心要素,主打发现和分享。对网...
    99+
    2023-05-17
    Python
  • Python数据可视化之Pyecharts如何使用
    这篇“Python数据可视化之Pyecharts如何使用”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Python数据可视化...
    99+
    2023-07-06
  • 如何使用Python进行数据可视化
    这篇“如何使用Python进行数据可视化”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“如何使用Python进行数据可视化”文...
    99+
    2023-07-05
  • Python实现数据可视化案例分析
    目录1. 问题描述2. 实验环境3. 实验步骤及结果1. 问题描述 对右图进行修改: 请更换图形的风格请将 x 轴的数据改为-10 到 10请自行构造一个 y 值的函数将直方图上的数...
    99+
    2024-04-02
  • Python中哪些库可以用来进行数据可视化?
    Python作为一种强大的编程语言,拥有丰富的数据可视化库,帮助用户更直观地展示数据,从而更好地理解和分析数据。本文将介绍几种常用的Python数据可视化库,并提供具体的代码示例,帮助...
    99+
    2024-04-02
  • 【数据分析与可视化】利用Python对学生成绩进行可视化分析实战(附源码)
    需要源码和数据集请点赞关注收藏后评论区留言私信~~~ 下面对学生成句和表现等数据可视化分析 导入模块 import pandas as pdimport numpy as npimport seaborn as snsimport m...
    99+
    2023-09-04
    数据分析 python 信息可视化 matplotlib Seaborn
  • 大数据分析中,如何使用ASP技术实现数据可视化?
    随着大数据时代的到来,数据分析和可视化已经成为了企业决策和业务发展中不可或缺的一部分。ASP技术作为一种流行的Web开发技术,已经被广泛应用于数据可视化中。本文将介绍如何使用ASP技术实现数据可视化,并分享一些演示代码。 一、数据可视化的重...
    99+
    2023-08-22
    二维码 大数据 编程算法
  • python可视化数据分析pyecharts初步尝试
    目录整体说明例子BoxplotBarHeatMap有一个web+flask项目需要可视化数据分析结果,检索后发现,pyecharts工具包非常对口。 Echarts 是一个由百度开源...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作