返回顶部
首页 > 资讯 > 后端开发 > Python >python数据分析绘图可视化
  • 780
分享到

python数据分析绘图可视化

2024-04-02 19:04:59 780人浏览 安东尼

Python 官方文档:入门教程 => 点击学习

摘要

前言: 数据分析初始阶段,通常都要进行可视化处理。数据可视化旨在直观展示信息的分析结果和构思,令某些抽象数据具象化,这些抽象数据包括数据测量单位的性质或数量。本章用的程序库matpl

前言:

数据分析初始阶段,通常都要进行可视化处理。数据可视化旨在直观展示信息的分析结果和构思,令某些抽象数据具象化,这些抽象数据包括数据测量单位的性质或数量。本章用的程序库matplotlib是建立在Numpy之上的一个python图库,它提供了一个面向对象api和一个过程式类的MATLAB API,他们可以并行使用。

1、

import numpy as np
import matplotlib.pyplot as plt
scores=np.random.randint(0,100,50)
plt.hist(scores,bins=8,histtype=‘stepfilled')
plt.title(‘37')
plt.show()

2、

x=np.arange(6)
y1=np.array([1,4,3,5,6,7])
y2=np.array([3,4,3,5,6,7])
y3=np.array([2,4,3,5,6,7])
plt.stackplot(x,y1,y2,y3)
plt.title(‘37')
plt.show()

3、

random_state=np.random.RandomState(1231241)
random_x=random_state.randn(10000)
plt.hist(random_x,bins=25)
plt.title(‘37')
plt.show()

4、

data=np.array([10,30,15,30,15])
pie_labels=np.array([‘A',‘B',‘C',‘D',‘E'])
plt.pie(data,radius=1.5,labels=pie_labels,autopct='%3.1f%%')
plt.title(‘37')
plt.show()

5、

import matplotlib as mpl
mpl.rcParams[‘font.sans-serif']=[‘SimHei']
mpl.rcParams[‘axes.unicode_minus']=False
kinds=[‘购物',‘礼尚往来',‘餐饮美食',‘通信',‘生活日用',‘交通出行',‘休闲娱乐',‘其他']
money_scale=[500/1500,123/1500,400/1500,234/1500,300/1500,200/1500,100/1500,150/1500]
dev_position=[0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1]
plt.pie(money_scale,labels=kinds,autopct='%3.1f%%',shadow=True,
explode=dev_position,startangle=90)
plt.title(‘37')
plt.show()

6、

num=50
x=np.random.rand(num)
y=np.random.rand(num)
plt.scatter(x,y)
plt.title(‘37')
plt.show()

7、

num=50
x=np.random.rand(num)
y=np.random.rand(num)
area=(800*np.random.rand(num)**2)
plt.scatter(x,y,s=area)
plt.title(‘37')
plt.show()

8、

plt.rcParams[‘font.sans-serif']=‘SimHei'
plt.rcParams[‘axes.unicode_minus']=False
x_speed=np.arange(10,210,10)
y_distance=np.array([0.3,0.5,1,3,5,5.5,7,8,9,12,14,15.5,17.8,19,20,23,27,30,31,32])
plt.scatter(x_speed,y_distance,s=50,alpha=0.9)
plt.title(‘37')
plt.show()

9、

plt.rcParams[‘font.family']= ‘SimHei'
plt.rcParams[‘axes.unicode_minus']=False
data_2018=np.array([4500,6654.5,5283.4,5107.8,5443.3,5550.6,6400.2,6404.9,5483.1,5330.2,5543,6199.9])
data_2017=np.array([4605.2,4710.3,5168.9,4767.2,4947,5203,6047.4,5945.5,5219.6,5038.1,5196.3,5698.6])
plt.boxplot([data_2018,data_2017],labels=(‘2018年',‘2017年'),meanline=True,widths=0.5,vert=False,patch_artist=True)
plt.title(‘37')
plt.show()

10、

plt.rcParams[‘font.family']= ‘SimHei'
plt.rcParams[‘axes.unicode_minus']=False
dim_num=6
data=np.array([[0.50,0.32,0.35,0.30,0.30,0.88],
[0.45,0.35,0.30,0.40,0.40,0.30],
[0.43,0.99,0.30,0.28,0.22,0.30],
[0.30,0.25,0.48,0.95,0.45,0.40],
[0.20,0.38,0.87,0.45,0.32,0.28],
[0.34,0.31,0.38,0.40,0.92,0.28]])
angles=np.linspace(0, 2 * np.pi, dim_num, endpoint=False)
angles=np.concatenate((angles,[angles[0]]))
data=np.concatenate((data,[data[0]]))
radar_labels=[‘研究型(I)',‘艺术型(A)',‘社会型(S)',‘企业型(E)',‘传统型©',‘现实型®']
radar_labels=np.concatenate((radar_labels, [radar_labels[0]]))
plt.polar(angles, data)
plt.thetagrids(angles * 180/np.pi, labels=radar_labels)
plt.fill(angles, data, alpha=0.25)
plt.title(‘37')
plt.show()

11、

data =np.array([20,50,10,15,30,55])
pie_labels=np.array([‘A',‘B',‘C',‘D',‘E',‘F'])
plt.pie(data,radius=1.5,wedgeprops={‘width': 0.7},labels=pie_labels,autopct='%3.1f%%',pctdistance=0.75)
plt.title(‘37')
plt.show()

12、

x = np.arange(1,13)
y_a = np.array([191,123,234,42,123,432,567,234,231,132,123,134])
y_b = np.array([123,143,234,242,523,232,467,334,131,332,234,345])
y_c = np.array([91,123,534,432,223,332,367,434,111,322,345,560])
plt.stackplot(x,y_a,y_b,y_c)
plt.title(‘37')
plt.show()

到此这篇关于Python数据分析绘图可视化的文章就介绍到这了,更多相关python 可视化内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: python数据分析绘图可视化

本文链接: https://lsjlt.com/news/119062.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • python数据分析绘图可视化
    前言: 数据分析初始阶段,通常都要进行可视化处理。数据可视化旨在直观展示信息的分析结果和构思,令某些抽象数据具象化,这些抽象数据包括数据测量单位的性质或数量。本章用的程序库matpl...
    99+
    2024-04-02
  • python数据分析绘图可视化实例分析
    本篇内容介绍了“python数据分析绘图可视化实例分析”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!前言:数据分析初始阶段,通常都要进行可视...
    99+
    2023-07-02
  • Python数据分析之绘图和可视化详解
    一、前言 matplotlib是一个用于创建出版质量图表的桌面绘图包(主要是2D方面)。该项目是由John Hunter于2002年启动的,其目的是为Python构建一个MATLAB式的绘图接口。matplotlib...
    99+
    2022-06-02
    Python绘图和可视化 python matplotlib库
  • Python数据分析之绘图和可视化的示例分析
    小编给大家分享一下Python数据分析之绘图和可视化的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!一、前言matplotlib是一个用于创建出版质量图表...
    99+
    2023-06-15
  • Python matplotlib数据可视化图绘制
    目录前言1.折线图2.直方图3.箱线图4.柱状图5.饼图6.散点图前言 导入绘图库: import matplotlib.pyplot as plt import numpy as ...
    99+
    2024-04-02
  • [数据分析与可视化] Python绘制数据地图3-GeoPandas使用要点
    本文主要介绍GeoPandas的使用要点。GeoPandas是一个Python开源项目,旨在提供丰富而简单的地理空间数据处理接口。GeoPandas扩展了Pandas的数据类型,并使用matplotl...
    99+
    2023-09-23
    python 数据分析 开发语言
  • Python数据可视化绘图实例详解
    目录利用可视化探索图表1.数据可视化与探索图2.常见的图表实例数据探索实战分享1.2013年美国社区调查2.波士顿房屋数据集利用可视化探索图表 1.数据可视化与探索图 数据可视化是指...
    99+
    2024-04-02
  • python数据可视化Seaborn绘制山脊图
    目录1. 引言2. 举个栗子3.山脊图4.扩展5.结论1. 引言 山脊图一般由垂直堆叠的折线图组成,这些折线图中的折线区域间彼此重叠,此外它们还共享相同的x轴. 山脊图经常以一种相...
    99+
    2024-04-02
  • Python Matplotlib数据可视化绘图之(三)————散点图
    文章目录 前言一、所用到的模块二、单一颜色的普通不分组散点图1.示例数据如下2.代码如下2.1 代码如下(示例):2.1.1 Case1: 三、多种颜色的普通不分组散点图1....
    99+
    2023-10-26
    matplotlib python 开发语言 pycharm numpy
  • python数据可视化之饼状图的绘制
    本篇文章给大家带来了关于python的相关知识,其中主要整理了饼状图的绘制相关问题,Pyplot 包含一系列绘图函数的相关函数,其中pie()函数可以绘制饼状图,下面一起来看一下,希望对大家有帮助。Pyplot 是 Matplotlib 的...
    99+
    2022-06-22
    python
  • python数据可视化绘制火山图示例
    目录导入模块1.读取测试数据2.查看数据3.筛选差异基因4.查看数据,发现多了type这一列5.统计个数6.绘火山图7.保存图片导入模块 import numpy as np imp...
    99+
    2024-04-02
  • Python疫情数据可视化分析
    目录前言功能函数读取文件更换列名,便于查看全球疫情趋势筛选出中国的数据利用groupby按照省统计确诊死亡治愈病例的总和确诊人数排名前15的国家这里用pyecharts库画图,绘制的...
    99+
    2024-04-02
  • Python数据可视化举例分析
    这篇文章主要介绍“Python数据可视化举例分析”,在日常操作中,相信很多人在Python数据可视化举例分析问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Python数据可视化举例分析”的疑惑有所帮助!接下来...
    99+
    2023-06-16
  • Python数据分析之Matplotlib数据可视化
    目录1.前言2.Matplotlib概念3.Matplotlib.pyplot基本使用3.数据展示3.1如何选择展示方式3.2绘制折线图3.3绘制柱状图3.3.1普通柱状图3.3.2...
    99+
    2024-04-02
  • Python数据可视化JupyterNotebook绘图生成高清图片
    大家好,我是小五???? 最近有小伙伴问了个问题:如何在jupyter notebook,用Matplotlib画图时能够更“高清”? 今天正好跟大家...
    99+
    2024-04-02
  • python可视化分析绘制散点图和边界气泡图
    目录一、绘制散点图二、绘制边界气泡图一、绘制散点图 实现功能: python绘制散点图,展现两个变量间的关系,当数据包含多组时,使用不同颜色和形状区分。 实现代码: import n...
    99+
    2024-04-02
  • python数据可视化之饼状图怎么绘制
    这篇文章主要介绍“python数据可视化之饼状图怎么绘制”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“python数据可视化之饼状图怎么绘制”文章能帮助大家解决问题。Pyplot 是 Matplot...
    99+
    2023-07-02
  • python数据可视化matplotlib绘制折线图示例
    目录plt.plot()函数各参数解析各参数具体含义为:x,ycolorlinestylelinewidthmarker关于marker的参数plt.plot()函数各参数解析 pl...
    99+
    2024-04-02
  • python数据可视化绘制世界人口地图
    目录前言获取两个字母的国别码制作世界地图绘制完整的世界人口地图根据人口数量将国家分组根据Pygal设置世界地图的样式前言 数据来源:population_data.json, 先看一...
    99+
    2024-04-02
  • Python数据可视化之绘制柱状图和条形图
    目录一、实验目的:二、实验内容:三、实验过程(附结果截图):一、实验目的: 1.掌握Python中柱状图、条形图绘图函数的使用 2.利用上述绘图函数实现数据可视化 二、实验内容: 1...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作