返回顶部
首页 > 资讯 > 后端开发 > 其他教程 >C++内存池两种方案解析
  • 662
分享到

C++内存池两种方案解析

2024-04-02 19:04:59 662人浏览 八月长安
摘要

目录c++内存池1、C++内存池分析2、多此一举方案3、分时复用改进方案4、其他的思考C++内存池 前言: 使用new expression为类的多个实例分配动态内存时,cookie

C++内存池

前言:

使用new expression为类的多个实例分配动态内存时,cookie导致内存利用率可能不高,此时我们通过实现类的内存池来降低overhead。从不成熟到巧妙优化的内存池,得益于uNIOn的分时复用特性,内存利用率得到了提高。

1、C++内存池分析

在实例化某个类的对象时(在heap而不是stack中),若不使用array new,则每次实例化时都要调用一次内存分配函数,类的每个实例在内存中都有上下两个cookie,从而降低了内存的利用率。然而,array new也有先天的缺陷,即只能调用默认无参构造函数,这对于很多没有提供无参构造函数的类来说是不合适的。

因此,我们可以对于一个没有实例化的类第一次实例化时,先分配一大块内存(内存池),这一大块内存记录在类中,只有上下两个cookie,能够容纳多个实例。后续实例化时,若内存池中还有剩余内存,则不必申请内存分配,只在内存池中分配。内存回收时,将实例所占用的内存回收到内存池中。若内存池中无内存,则再申请分配大块内存。

2、多此一举方案

我们以链表的形式组织内存池,内存池中链表的每个结点是一个小桶,这个桶中装我们实例化的对象。

内存池链表的头结点记录在类中,即以class staic变量的形式存储。组织形式如下:

实现代码如下:


#include <iOStream>
using namespace std;
class DemoClass{
public:
    DemoClass() = default;
    DemoClass(int i):data(i){}
    static void* operator new(size_t size);
    static void operator delete(void *);
    virtual ~DemoClass(){}
private:
    DemoClass *next;
    int data;
    static DemoClass *freeMemHeader;
    static const size_t POOL_SIZE;
};
DemoClass * DemoClass::freeMemHeader = nullptr;
const size_t DemoClass::POOL_SIZE = 24;//设定内存池能容纳24个DemoClass对象
void* DemoClass::operator new(size_t size){
    DemoClass* p;
    if(!freeMemHeader){//freeMemHeader为空,内存池中无空间,分配内存
        size_t pool_mem_bytes = size * POOL_SIZE;//内存池的字节大小 = 每个实例的大小(字节数)* 内存池中能容纳的最大实例数
        freeMemHeader = reinterpret_cast<DemoClass*>(new char[pool_mem_bytes]);//new char[]分配pool_mem_bytes个字节,因为每个char占用1个字节
        cout << "Info:向操作系统申请了" << pool_mem_bytes << "字节的内存。" << endl;
        for(int i = 0;i < POOL_SIZE - 1; ++i){//将内存池中POOL_SIZE个小块内存,串起来。
            freeMemHeader[i].next = &freeMemHeader[i + 1];
        }
        freeMemHeader[POOL_SIZE - 1].next = nullptr;
    }
    p = freeMemHeader;//取内存池(链表)的头部,分配给要实例化的对象
    cout << "Info:从内存池中取了" << size << "字节的内存。" << endl;
    freeMemHeader = freeMemHeader -> next;//从内存池中删去取出的那一小块地址,即更新内存池
    p -> next = nullptr;
    return p;
}
void DemoClass::operator delete(void* p){
    DemoClass* tmp = (DemoClass*) p;
    tmp -> next = freeMemHeader;
    freeMemHeader = tmp;
}

测试代码如下:


int main(int arGC, char* argv[]){
    cout << "sizeof(DemoClass):" << sizeof(DemoClass) << endl;
    size_t N = 32;
    DemoClass* demos[N];
    for(int i = 0; i < N; ++i){
        demos[i] = new DemoClass(i);
        cout << "address of the ith demo:" << demos[i] << endl;
        cout << endl;
    }
    return 0;
}

其结果如下:

 

可以看到每个DemoClass的实例大小为24字节,内存池一次从操作系统中申请了576个字节的内存,这些内存可以容纳24个实例。上面显示出了每个实例的内存地址,内存池中相邻实例的内存首地址之差为24,即实例的大小,证明了一个内存池的实例之间确实没有cookie。

当内存池中内存用完后,又向操作系统申请了576个字节的内存。

由此,只有每个内存池两侧有cookie,而内存池中的实例不存在cookie,相比于每次调用new expression实例化对象都有cookie,内存池的组织形式确实在形式上提高了内存利用率

那么,有什么问题么

sizeof(DemoClass)等于24

  • int data数据域占4个字节
  • 两个构造函数一个析构函数各占4字节,共12字节
  • 额外的指针DemoClass*,在64位机器上,占8个字节

这样一个DemoClass的大小确实是24字节。wait,what?

我们为了解决cookie带来的内存浪费,引入了指针next,但却又引入了8个字节的overhead,脱裤子放屁,多此一举

这样看来确实没有达到要求,但至少为我们提供了一种思路,不是么?

3、分时复用改进方案

首先我们先回忆下c++ 中的Union:

在任意时刻,联合中只能有一个数据成员可以有值。当给联合中某个成员赋值之后,该联合中的其它成员就变成未定义状态了。

结合我们之前不成熟的内存池,我们发现,当内存池中的桶还没有被分配给实例时,只有next域有用,而当桶被分配给实例后,next域就没什么用了;当桶被回收时,数据域变无用而next指针又需要用到。这不正是union的特性么?

看一下代码实现:


#include <iostream>
using namespace std;
class DemoClass{
public:
    DemoClass() = default;
    DemoClass(int i, double p){
        data.num = i;
        data.price = p;
    }
    static void* operator new(size_t size);
    static void operator delete(void *);
    virtual ~DemoClass(){}
private:
    struct DemoData{
        int num;
        double price;
    };
private:
    static DemoClass *freeMemHeader;
    static const size_t POOL_SIZE;
    union {
        DemoClass *next;
        DemoData data;
    };
    
};
DemoClass * DemoClass::freeMemHeader = nullptr;
const size_t DemoClass::POOL_SIZE = 24;//设定内存池能容纳24个DemoClass对象
void* DemoClass::operator new(size_t size){
    DemoClass* p;
    if(!freeMemHeader){//freeMemHeader为空,内存池中无空间,分配内存
        size_t pool_mem_bytes = size * POOL_SIZE;//内存池的字节大小 = 每个实例的大小(字节数)* 内存池中能容纳的最大实例数
        freeMemHeader = reinterpret_cast<DemoClass*>(new char[pool_mem_bytes]);//new char[]分配pool_mem_bytes个字节,因为每个char占用1个字节
        cout << "Info:向操作系统申请了" << pool_mem_bytes << "字节的内存。" << endl;
        for(int i = 0;i < POOL_SIZE - 1; ++i){//将内存池中POOL_SIZE个小块内存,串起来。
            freeMemHeader[i].next = &freeMemHeader[i + 1];
        }
        freeMemHeader[POOL_SIZE - 1].next = nullptr;
    }
    p = freeMemHeader;//取内存池(链表)的头部,分配给要实例化的对象
    cout << "Info:从内存池中取了" << size << "字节的内存。" << endl;
    freeMemHeader = freeMemHeader -> next;//从内存池中删去取出的那一小块地址,即更新内存池
    p -> next = nullptr;
    return p;
}
void DemoClass::operator delete(void* p){
    DemoClass* tmp = (DemoClass*) p;
    tmp -> next = freeMemHeader;
    freeMemHeader = tmp;
}

对比前一种实现代码,只是构造函数、数据域和指针域的组织形式发生了变化:

  • 由于数据域增加了price项,构造函数中也增加了对应的参数
  • 数据域被集成定义成一个类自定义struct类型
  • 数据域和指针域被组织为union

测试代码依旧:


int main(int argc, char* argv[]){
    cout << "sizeof(DemoClass):" << sizeof(DemoClass) << endl;
    size_t N = 32;
    DemoClass* demos[N];
    for(int i = 0; i < N; ++i){
        demos[i] = new DemoClass(i, i * i);
        cout << "address of the " << i << "th demo:" << demos[i] << endl;
        cout << endl;
    }
    return 0;
}

结果:

 

 

可以看到每个DemoClass的实例大小为24字节,一个内存池的实例之间没有cookie。

分析一下sizeof(DemoClass)等于24的缘由:

data数据域占12个字节(int 4字节、double 8字节)。
两个构造函数一个析构函数各占4字节,共12字节。
指针DemoClass,在64位机器上,占8个字节,但由于和数据域使用了union,data数据域12个字节中的前8个字节在适当的时机被看作DemoClass,而不占用额外空间,消除了overhead。
这样一个DemoClass的大小确实是24字节。利用union的分时复用特性,我们消除了初步方案中指针带来的脱裤子放屁效果。

4、其他的思考

细心的读者可能会发现,前面的那两种方案都有共同的小缺陷,即当程序一直实例化而不析构时,内存池会向操作系统申请多次大块内存,而当这些对象一起回收时,内存池中的剩余桶数会远大于设定的POOL_SIZE的大小,这个峰值多大取决于类实例化和回收的时机。

另外,内存池中的内存暂时不会回收给操作系统,峰值很大可能会对内存分配带来一些影响,不过这却不属于内存泄漏。在以后的文章中,我们可能会讨论一些性能更好的内存分配方案。

以上就是C++内存池两种方案对比的详细内容,更多关于C++内存池的资料请关注编程网其它相关文章!望大家以后多多支持编程网!

--结束END--

本文标题: C++内存池两种方案解析

本文链接: https://lsjlt.com/news/133924.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • C++内存池两种方案解析
    目录C++内存池1、C++内存池分析2、多此一举方案3、分时复用改进方案4、其他的思考C++内存池 前言: 使用new expression为类的多个实例分配动态内存时,cookie...
    99+
    2024-04-02
  • C++手写内存池的案例详解
    引言 使用new expression为类的多个实例分配动态内存时,cookie导致内存利用率可能不高,此时我们通过实现类的内存池来降低overhead。从不成熟到巧妙优化的内存池,...
    99+
    2024-04-02
  • nginx内存池源码解析
    目录内存池概述一、nginx数据结构二、nginx向OS申请空间ngx_create_pool三、nginx向内存池申请空间四、大块内存的分配与释放五、关于小块内存不释放六、销毁和清...
    99+
    2024-04-02
  • C++内存池的实现方法
    这篇文章主要讲解了“C++内存池的实现方法”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“C++内存池的实现方法”吧!目录一、内存池基础知识什么是内存池1 池化技术2 内存池内存池的作用1 效...
    99+
    2023-06-20
  • C++内存泄漏问题分析与解决方案
    C++内存泄漏问题分析与解决方案在C++的开发过程中,内存泄漏是一个常见的问题。当程序动态分配内存后却没有正确释放,在程序运行过程中会导致内存的不断累积,最终耗尽系统的可用内存。内存泄漏不仅会影响程序的性能,还可能导致程序崩溃甚至系统崩溃。...
    99+
    2023-10-22
    C++ 解决方案 内存泄漏
  • php常驻内存什么?两种常驻方法浅析
    PHP常驻内存是指在Web应用程序开发中,代码被加载到内存中并一直保持运行状态,而不需要在每次请求时重新加载和执行。因此,相比于每次请求都需要重新加载和解析PHP文件的传统方式,使用PHP常驻内存可以大大提高Web应用程序的性能和响应速度。...
    99+
    2023-05-14
    php
  • C++中内存泄漏问题的分析与解决方案
    C++中内存泄漏问题的分析与解决方案概述:内存泄漏是指程序在动态分配内存后,没有及时释放导致内存无法再被程序使用的情况。在C++开发中,内存泄漏是一个常见且严重的问题,一旦发生,会导致程序运行效率下降,最终可能导致程序崩溃。本文将对C++中...
    99+
    2023-10-22
    分析(Analysis) 解决方案(Solution) 内存泄漏(Memory Leak)
  • C++基本组件之内存池详解
    内存池概念 1:尽量减少malloc的次数 2:频繁申请小块内存空间都造成空间的极大浪费 3:利用new和delete运算符重载,替代系统调用 4:减少malloc的次数,可在一定程...
    99+
    2023-03-01
    C++ 基本组件 内存池 C++ 内存池
  • 解析Android截取手机屏幕两种实现方案
    最近在开发的过程中,遇到了一个需要截取屏幕保存为图片的需求,具体为截取webview的视图保存图片。 方法1:首先想到的思路是利用SDK提供的View.getDrawingCa...
    99+
    2022-06-06
    手机屏幕 手机 Android
  • C++如何实现定长内存池详解
    目录1. 池化技术2. 内存池概念2.1 内存碎片3. 实现定长内存池3.1 定位new表达式(placement-new)3.2 完整实现总结1. 池化技术 池是在计算机技术中经...
    99+
    2024-04-02
  • Go实现线程池(工作池)的两种方式实例详解
    worker pool简介 worker pool其实就是线程池thread pool。对于go来说,直接使用的是goroutine而非线程,不过这里仍然以线程来解释线程池。 在线程...
    99+
    2024-04-02
  • error: (-215:Assertion failed)的两种解决方案
    问题描述:在对视频分帧读取进行差值哈希算法比较时出现读取错误现象,具体代码内容和报错如下: import osimport cv2import numpy as npimport subprocessimport matplotlib.py...
    99+
    2023-09-02
    python 开发语言
  • Spark SerializedLambda错误的两种解决方案
    目录Spark SerializedLambda错误解决方案(一)解决方案(二)执行spark报错EOFException Kryo和SerializedLambdaEOFExcep...
    99+
    2024-04-02
  • 解析C++类内存分布
    工欲善其事,必先利其器,我们先用好Visual Studio工具,像下面这样一步一步来: 先选择左侧的C/C++->命令行,然后在其他选项这里写上/d1 reportAll...
    99+
    2024-04-02
  • C++中高性能内存池的实现详解
    目录一、概述二、主函数设计三、模板链表栈四、设计内存池五、实现六、与 std::vector 的性能对比总结一、概述 在 C/C++ 中,内存管理是一个非常棘手的问题,我们在编写一个...
    99+
    2022-11-13
    C++高性能内存池 C++ 内存池
  • 两种获取connectionString的方式案例详解
     两种获取connectionString的方式 1. public static string connectionString = ConfigurationMan...
    99+
    2024-04-02
  • AndroidHttps证书过期的两种解决方案
    目录方案一方案二应该有很多小伙伴遇到这样一个问题,在线上已发布的app里,关于https的cer证书过期,从而导致app所有网络请求失效无法使用。 这个时候有人就要说了,应急发布一个...
    99+
    2022-12-24
    Android Https证书过期 Android Https证书
  • C++内存管理详细解析
    目录一、C++内存管理1、 new/delete表达式2、new/delete重载3、类内自定义allocator(per-class allocator) 二、多线程内存分配器1、...
    99+
    2024-04-02
  • @WebFilter两种使用方法和失效解决方案
    1、直接使用过滤器不会生效@WebFilter(urlPatterns="/dd@Slf4j@WebFilter(urlPatterns="/dd  @Override  public void init(FilterConfig filt...
    99+
    2023-09-07
    java servlet spring boot
  • C语言内存泄露很严重的解决方案
    目录1.前言2.内存泄漏问题原理2.1堆内存在C代码中的存储方式2.2堆内存的获取方法2.3内存泄漏三要素2.4内存释放误区3.内存泄漏问题检视方法1.前言 最近部门不同产品接连出现...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作