返回顶部
首页 > 资讯 > 后端开发 > Python >Python pandas入门系列之众数和分位数
  • 542
分享到

Python pandas入门系列之众数和分位数

2024-04-02 19:04:59 542人浏览 泡泡鱼

Python 官方文档:入门教程 => 点击学习

摘要

目录准备1.求众数1.1对全表进行操作1.1.1求取每列的众数1.1.2 求取每行的众数1.2 对单独的一行或者一列进行操作1.2.1 求取单独某一列的众数1.2.2 求取单独某一行

准备

本文用到的表格内容如下:

先来看一下原始情形:


import pandas as pd
​
df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df)

result:

   数学成绩  语文成绩  英语成绩
0    89    78    98
1    35    34    34
2    43    56    25
3    35    78    83
4    67    46    65
5    89    89    83
6    96    45    83
7    35    67    45
8    35    78    83

1.求众数

1.1对全表进行操作

1.1.1求取每列的众数


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.var())

result:

   数学成绩  语文成绩  英语成绩
0    35    78    83

1.1.2 求取每行的众数


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.mode(axis=1))

result:

      0     1     2
0  78.0  89.0  98.0
1  34.0   NaN   NaN
2  25.0  43.0  56.0
3  35.0  78.0  83.0
4  46.0  65.0  67.0
5  89.0   NaN   NaN
6  45.0  83.0  96.0
7  35.0  45.0  67.0
8  35.0  78.0  83.0

1.2 对单独的一行或者一列进行操作

1.2.1 求取单独某一列的众数


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.mode(axis=1))

result:

0    35
dtype: int64

1.2.2 求取单独某一行的众数


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.iloc[[0]].mode())

result:

   数学成绩  语文成绩  英语成绩
0    89    78    98

1.3 对多行或者多列进行操作

1.3.1 求取多列的众数


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df[['数学成绩', "语文成绩"]].mode())

result:

   数学成绩  语文成绩
0    35    78

1.3.2 求取多行的众数


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.iloc[[0, 1]].mode())

result:

   数学成绩  语文成绩  英语成绩
0    35    34    34
1    89    78    98

2 求分位数

分位数是比中位数更加详细的基于位置的指标,分位数主要有四分之一分位数,二分之一分位数(就是中位数)、四分之三分位数

2.1 求取不同分位的分位数

2.1.1 四分之一分位数


import pandas as pd
​
df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.quantile(0.25))

result:

数学成绩    35.0
语文成绩    46.0
英语成绩    45.0
Name: 0.25, dtype: float64

2.1.2 四分之三分位数


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.quantile(0.75))

result:

数学成绩    89.0
语文成绩    78.0
英语成绩    83.0
Name: 0.75, dtype: float64

2.2对全表进行操作

2.2.1对每一列求分位数


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.quantile(0.25))

result:

数学成绩    35.0
语文成绩    46.0
英语成绩    45.0
Name: 0.25, dtype: float64

2.2.2 对每一行求分位数


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.quantile(0.25, axis=1))

result:

0    83.5
1    34.0
2    34.0
3    56.5
4    55.5
5    86.0
6    64.0
7    40.0
8    56.5
Name: 0.25, dtype: float64

2.3 对单独的一行或者一列进行操作

2.3.1 对某一列求分位数


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df['数学成绩'].quantile(0.25))

result:

35.0

2.3.2 对某一行求分位数


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.iloc[[0]].quantile(0.25))

result:

数学成绩    89.0
语文成绩    78.0
英语成绩    98.0
Name: 0.25, dtype: float64

2.4 对多行或者多列进行操作

2.4.1 对多列求分位数


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df[['数学成绩', "语文成绩"]].quantile(0.25))

result:

数学成绩    35.0
语文成绩    46.0
Name: 0.25, dtype: float64

2.4.2 对多行求分位数


df = pd.read_excel(r'C:\Users\admin\Desktop\测试.xlsx')
print(df.iloc[[0, 1]].quantile(0.25))

result:

数学成绩    48.5
语文成绩    45.0
英语成绩    50.0
Name: 0.25, dtype: float64

附:pandas 和 numpy计算分位数的区别

pandas 和 numpy中都有计算分位数的方法,pandas中是quantile,numpy中是percentile

两个方法其实没什么区别,用法上稍微不同,quantile的优点是与pandas中的groupby结合使用,可以分组之后取每个组的某分位数

quantile代码:


import pandas as pd
import numpy as np
data = pd.read_csv('order_rank_p_0409.txt',sep='\t')
#将data按id_1 和 id_2 分组
grouped=data.groupby(['id_1','id_2'])
#用quantile计算第40%的分位数
grouped['gmv'].quantile(0.4) 
#用to_csv生成文件
x.to_csv('order_ran_re.txt',sep= '\t')

percentile代码:


import pandas as pd
import numpy as np
data = pd.read_csv('order_rank_p_0409.txt',sep='\t')
a = array(data['gmv'])
np.percentile(a,0.4)

两段代码,两种方法计算的结果是一样的

总结

到此这篇关于python pandas系列之众数和分位数的文章就介绍到这了,更多相关pandas众数和分位数内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: Python pandas入门系列之众数和分位数

本文链接: https://lsjlt.com/news/131864.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作