返回顶部
首页 > 资讯 > 后端开发 > Python >Opencv实现二维直方图的计算及绘制
  • 628
分享到

Opencv实现二维直方图的计算及绘制

2024-04-02 19:04:59 628人浏览 独家记忆

Python 官方文档:入门教程 => 点击学习

摘要

目录1. 效果图2. 源码参考这篇博客将介绍如何使用python,OpenCV进行二维直方图的计算及绘制(分别用Opencv和Numpy计算),二维直方图可以让我们对不同的像素密度有

这篇博客将介绍如何使用pythonOpenCV进行二维直方图的计算及绘制(分别用Opencv和Numpy计算),二维直方图可以让我们对不同的像素密度有更好的了解。

1. 效果图

原始图如下:

在这里插入图片描述

1维直方图如下:

在这里插入图片描述

2维直方图如下:

X轴显示S值,Y轴显示色调。

在这里插入图片描述

hsvmap效果图如下:

在这里插入图片描述

2. 源码


# OpenCV中的二维直方图:使用相同的函数cv2.calcHist()计算。
# 对于1D直方图,我们从BGR转换为灰度
# 对于2D直方图,需要将图像从BGR转换为HSV

import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('ym.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

# 1维直方图
hist = cv2.calcHist([gray], [0], None, [256], [0, 256])
hist, bins = np.histogram(img.ravel(), 256, [0, 256])
plt.hist(img.ravel(), 256, [0, 256])
plt.show()

# 二维直方图可以让我们对不同的像素密度有了更好的了解
# OpenCV计算2D直方图
# HSV图像 [0,1]表示H、S通道,[180,256]表示H、S的bins分别为180、256
# [0,180,0,256]表示值的范围
hist = cv2.calcHist([hsv], [0, 1], None, [180, 256], [0, 180, 0, 256])

hist = np.clip(hist * 0.005, 0, 1)
cv2.imshow('hist', hist)
cv2.waiTKEy(0)

plt.imshow(hist, interpolation='nearest')
plt.show()

# Numpy计算1D直方图:np.histogram();
# Numpy计算2D直方图:np.historogram2d()
h, s, v = cv2.split(hsv)
hist, xbins, ybins = np.histogram2d(h.ravel(), s.ravel(), [180, 256], [[0, 180], [0, 256]])
plt.imshow(hist, interpolation='nearest')
plt.show()

参考

 https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_histograms/py_2d_histogram/py_2d_histogram.html#twod-histogram

Https://GitHub.com/seminar2012/opencv/blob/master/samples/Python/color_histogram.py

到此这篇关于Opencv实现二维直方图的计算及绘制的文章就介绍到这了,更多相关Opencv 二维直方图 内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: Opencv实现二维直方图的计算及绘制

本文链接: https://lsjlt.com/news/130718.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作