返回顶部
首页 > 资讯 > 后端开发 > Python >基于OpenCV的直方图匹配的实现方法
  • 193
分享到

基于OpenCV的直方图匹配的实现方法

2024-04-02 19:04:59 193人浏览 安东尼

Python 官方文档:入门教程 => 点击学习

摘要

如何为图像生成直方图,如何使直方图相等,最后如何将图像直方图修改为与其他直方图相似。 01. 什么是图像直方图? 在开始定义直方图之前,为简单起见我们先使用灰度图像,稍后再解释彩色图

如何为图像生成直方图,如何使直方图相等,最后如何将图像直方图修改为与其他直方图相似。

01. 什么是图像直方图?

在开始定义直方图之前,为简单起见我们先使用灰度图像,稍后再解释彩色图像的处理过程。

图像直方图表示图像的像素分布情况。换言之,图像直方图显示具有特定像素值的图像点数量。例如,假设正常图像的像素强度在0到255之间变化。为了生成其直方图,我们只需要计算像素值为0的像素数量,然后计算1并继续到255即可。在图1中,我们有一个5 * 5的样本图像,我们通过计算每个像素强度的数量来创建直方图表。

图1:生成图像直方图的过程

02. 如何生成图像直方图?

python中,我们可以使用以下两个函数来创建然后显示图像的直方图。


import matplotlib.pyplot as plt
import numpy as np
 
 
def generate_histogram(img, do_print):
  """
  @params: img: can be a grayscale or color image. We calculate the NORMalized histogram of this image.
  @params: do_print: if or not print the result histogram
  @return: will return both histogram and the grayscale image 
  """
  if len(img.shape) == 3: # img is colorful, so we convert it to grayscale
    gr_img = np.mean(img, axis=-1)
  else:
    gr_img = img
  '''now we calc grayscale histogram'''
  gr_hist = np.zeros([256])
 
 
  for x_pixel in range(gr_img.shape[0]):
    for y_pixel in range(gr_img.shape[1]):
      pixel_value = int(gr_img[x_pixel, y_pixel])
      gr_hist[pixel_value] += 1
 
 
  '''normalizing the Histogram'''
  gr_hist /= (gr_img.shape[0] * gr_img.shape[1])
  if do_print:
    print_histogram(gr_hist, name="n_h_img", title="Normalized Histogram")
  return gr_hist, gr_img
 
 
 def print_histogram(_histrogram, name, title):
  plt.figure()
  plt.title(title)
  plt.plot(_histrogram, color='#ef476f')
  plt.bar(np.arange(len(_histrogram)), _histrogram, color='#b7b7a4')
  plt.ylabel('Number of Pixels')
  plt.xlabel('Pixel Value')
  plt.savefig("hist_" + name)

在大多数情况下,当我们创建直方图时,我们通过将每个强度值的像素数除以归一化因子(即图像宽度和图像高度的乘积)来对直方图进行归一化。为了便于使用,如果generate_histogram函数的输入图像是彩色图像,我们首先将其转换为灰度图像(请参见第6行)。

03. 如何均衡图像直方图?

直方图均衡化通常用于增强图像的对比度。因此,该技术不能保证始终提高图像质量。计算CDF(累积分布函数)是均衡图像直方图的常用方法。在图2中,我们计算了在图1中创建的样本图像的CDF。此外,在图3中,我们显示了先前样本的均衡直方图。

图2:计算CDF。

图3:均方图。

为了计算Python中的均衡直方图,我们创建了以下代码:


def equalize_histogram(img, histo, L):
  eq_histo = np.zeros_like(histo)
  en_img = np.zeros_like(img)
  for i in range(len(histo)):
    eq_histo[i] = int((L - 1) * np.sum(histo[0:i]))
  print_histogram(eq_histo, name="eq_"+str(index), title="Equalized Histogram")
  '''enhance image as well:'''
  for x_pixel in range(img.shape[0]):
    for y_pixel in range(img.shape[1]):
      pixel_val = int(img[x_pixel, y_pixel])
      en_img[x_pixel, y_pixel] = eq_histo[pixel_val]
  '''creating new histogram'''
  hist_img, _ = generate_histogram(en_img, print=False, index=index)
  print_img(img=en_img, histo_new=hist_img, histo_old=histo, index=str(index), L=L)
  return eq_histo

这是我们拍摄的3张不同图片,并用作示例。如图4所示,对于第一个图像,直方图显示低强度像素的数量多于明亮像素。对于第二张图像,情况完全相反,其中较亮像素的密度远大于较暗像素的密度。第三张图片似乎具有半正态直方图。

图4:三种不同类型的图像及其直方图和均等的直方图。

使用均衡直方图增强图像

如前所述,我们可以使用图像的均衡直方图修改图像的对比度。如代码2第12行所示,对于输入图像中的每个像素,我们可以使用其均等值。结果可能比原始图像更好,但不能保证。在图5中,我们描述了3张图像的修改版本。如图所示,使用其均等的直方图修改图像会产生对比度更高的图像。此功能在许多计算机视觉任务中很有用。

图5:使用均衡直方图的对比度修改。最左列是原始图像。中间一栏是对比度修改的结果。

最右边的列是修改后的图像的直方图。

04. 什么是直方图匹配?

假设我们有两个图像,每个图像都有其特定的直方图。因此,我们想在进一步解决此问题之前,是否可以根据另一幅图像的对比度来修改一幅图像?答案是肯定的。实际上,这就是直方图匹配的定义。换句话说,给定图像A和B,可以根据B修改A的对比度。

当我们要统一一组图像的对比度时,直方图匹配非常有用。实际上,直方图均衡也可以视为直方图匹配,因为我们将输入图像的直方图修改为与正态分布相似。

为了匹配图像A和B的直方图,我们需要首先均衡两个图像的直方图。然后,我们需要使用均衡后的直方图将A的每个像素映射到B。然后,我们基于B修改A的每个像素。

让我们使用图6中的以下示例来阐明以上段落。

图6:直方图匹配

在图6中,我们将图像A作为输入图像,将图像B作为目标图像。我们要基于B的分布来修改A的直方图。第一步,我们计算A和B的直方图和均等直方图。然后,我们需要根据该值映射A的每个像素它的均衡直方图求B的值。因此,例如,对于A中强度级别为0的像素,A均衡直方图的对应值为4。现在,我们看一下B均衡直方图并找到强度值对应于4,即0。因此我们将0强度从A映射到0 从B开始。对于A的所有强度值,我们继续进行。如果从A到B的均衡直方图中没有映射,我们只需要选择最接近的值即可。


def find_value_target(val, target_arr):
  key = np.where(target_arr == val)[0]
 
 
  if len(key) == 0:
    key = find_value_target(val+1, target_arr)
    if len(key) == 0:
      key = find_value_target(val-1, target_arr)
  vvv = key[0]
  return vvv
 
 
 
 
def match_histogram(inp_img, hist_input, e_hist_input, e_hist_target, _print=True):
  '''map from e_inp_hist to 'target_hist '''
  en_img = np.zeros_like(inp_img)
  tran_hist = np.zeros_like(e_hist_input)
  for i in range(len(e_hist_input)):
    tran_hist[i] = find_value_target(val=e_hist_input[i], target_arr=e_hist_target)
  print_histogram(tran_hist, name="trans_hist_", title="Transferred Histogram")
  '''enhance image as well:'''
  for x_pixel in range(inp_img.shape[0]):
    for y_pixel in range(inp_img.shape[1]):
      pixel_val = int(inp_img[x_pixel, y_pixel])
      en_img[x_pixel, y_pixel] = tran_hist[pixel_val]
  '''creating new histogram'''
  hist_img, _ = generate_histogram(en_img, print=False, index=3)
  print_img(img=en_img, histo_new=hist_img, histo_old=hist_input, index=str(3), L=L)

图7:直方图匹配示例。我们修改了左图像的直方图以匹配中心图像的直方图。

图7示出了直方图匹配的示例。如大家所见,尽管最左边的图像是明亮的图像,但就对比度级别而言,可以将中心图像视为更好的图像。因此,我们决定使用中心图像的收缩来修改最左边的图像。结果,即最右边的图像已得到改善。

代码链接:https://GitHub.com/aliprf/CV-HistogramMatching

总结

到此这篇关于基于OpenCV的直方图匹配的实现方法的文章就介绍到这了,更多相关OpenCV直方图匹配内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: 基于OpenCV的直方图匹配的实现方法

本文链接: https://lsjlt.com/news/122774.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • 基于OpenCV的直方图匹配的实现方法
    如何为图像生成直方图,如何使直方图相等,最后如何将图像直方图修改为与其他直方图相似。 01. 什么是图像直方图? 在开始定义直方图之前,为简单起见我们先使用灰度图像,稍后再解释彩色图...
    99+
    2024-04-02
  • opencv C++模板匹配的实现方法
    这篇文章主要介绍“opencv C++模板匹配的实现方法”,在日常操作中,相信很多人在opencv C++模板匹配的实现方法问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”opencv&nb...
    99+
    2023-06-29
  • 基于OpenCV如何生成图像直方图
    这篇文章将为大家详细讲解有关基于OpenCV如何生成图像直方图,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。01. 什么是图像直方图?在开始定义直方图之前,为简单起见我们先使用灰度图像,稍后再解释彩色图像...
    99+
    2023-06-14
  • C# OpenCV实现形状匹配的方法详解
    1. 多角度模板匹配测试效果如下图: 图1-1  图1-2 图1-3 正负角度均可正常识别,识别角度偏差<1° 2. 下面分享一下开发过程: a). R...
    99+
    2024-04-02
  • 基于Python+Matplotlib实现直方图的绘制
    目录1.关于直方图2.plt.hist()3. 绘制一幅简单的 频数 分布直方图4. 绘制一幅 频率 分布直方图5. 累积分布直方图(水平方向)1.关于直方图 直...
    99+
    2024-04-02
  • OpenCV实战之基于Hu矩实现轮廓匹配
    目录前言一、查找轮廓二、计算Hu矩三、显示效果四、源码总结前言 本文将使用OpenCV C++ 基于Hu矩进行轮廓匹配。 一、查找轮廓 原图 测试图 vector<vect...
    99+
    2024-04-02
  • OpenCV中如何基于Hu矩实现轮廓匹配
    这篇文章将为大家详细讲解有关OpenCV中如何基于Hu矩实现轮廓匹配,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。一、查找轮廓原图测试图vector<vector<Point>>f...
    99+
    2023-06-26
  • 基于Python+Matplotlib怎么实现直方图的绘制
    今天小编给大家分享一下基于Python+Matplotlib怎么实现直方图的绘制的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧...
    99+
    2023-06-30
  • python基于OpenCV模板匹配识别图片中的数字
    目录前言程序目标思路讲解代码讲解完整代码总结前言 本博客主要实现利用OpenCV的模板匹配识别图像中的数字,然后把识别出来的数字输出到txt文件中,如果识别失败则输出“读取失败”。...
    99+
    2024-04-02
  • opencv-python图像配准(匹配和叠加)的实现
    图像配准需是指对不同条件下得到的两幅或多幅图像进行匹配、叠加的过程。最简单的做法就是求得原图像到目标图像之间的透视变换矩阵,将原图像按照矩阵进行变换,就可以得到和目标图像相似的效果。...
    99+
    2024-04-02
  • python如何基于OpenCV模板匹配识别图片中的数字
    小编给大家分享一下python如何基于OpenCV模板匹配识别图片中的数字,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!程序目标单个数字模板:(这些单个模板是我自...
    99+
    2023-06-14
  • Opencv实现二维直方图的计算及绘制
    目录1. 效果图2. 源码参考这篇博客将介绍如何使用Python,Opencv进行二维直方图的计算及绘制(分别用Opencv和Numpy计算),二维直方图可以让我们对不同的像素密度有...
    99+
    2024-04-02
  • OpenCV 直方图均衡化的实现原理解析
    目录直方图均衡化介绍图像的直方图是什么更形象解释什么是直方图均衡化?直方图均衡化是如何实现的?直方图均衡化的作用直方图均衡化步骤相关APIequalizeHist代码示例灰度图均值化...
    99+
    2024-04-02
  • OpenCV 图像梯度的实现方法
    目录概述梯度运算礼帽黑帽Sobel 算子计算 x计算 y计算 x+y融合概述 OpenCV 是一个跨平台的计算机视觉库, 支持多语言, 功能强大. 今天小白就带大家一起携手走进 Op...
    99+
    2024-04-02
  • Python OpenCV中的drawMatches()关键匹配绘制方法
    目录作用说明函数原型参数详解结果作用说明 该方法被用于绘制关键点的匹配情况。我们看到的许多匹配结果都是使用这一方法绘制的——一左一右两张图像,匹配的关键点之间...
    99+
    2024-04-02
  • 基于OpenCV(python)的实现文本分割之垂直投影法
    在我的上一篇博客中讲述了水平投影法取出文本行图像的实现,在这里将用垂直投影法对文本行的每个字符进行分割。下图是用水平投影法切割的文本行: 文本分割的原理如下,先用水平投影取出单一文...
    99+
    2024-04-02
  • OpenCV实现特征检测和特征匹配方法汇总
    目录1.SURF2.SIFT3.ORB4.FAST5.Harris角点一幅图像中总存在着其独特的像素点,这些点我们可以认为就是这幅图像的特征,成为特征点。计算机视觉领域中的很重要的图...
    99+
    2024-04-02
  • shell字符串匹配的实现方法
    这篇文章主要介绍了shell字符串匹配的实现方法,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。一、简介      Bash ...
    99+
    2023-06-09
  • OpenCV-Python直方图均衡化实现图像去雾
    直方图均衡化 直方图均衡化的目的是将原始图像的灰度级均匀地映射到整个灰度级范围内,得到一个灰度级分布均衡的图像。这种均衡化,即实现了灰度值统计上的概率均衡,也实现了人类视觉系统上(H...
    99+
    2024-04-02
  • 基于python实现垂直爬虫系统的方法详解
    html_downloader from urllib import request def download(url): if url is None: r...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作