返回顶部
首页 > 资讯 > 后端开发 > 其他教程 >OpenCV实现图像距离变换
  • 490
分享到

OpenCV实现图像距离变换

2024-04-02 19:04:59 490人浏览 安东尼
摘要

图像中两个像素之间的距离有多种定义方式,图像处理中常用的距离有欧式距离、街区距离和棋盘距离 欧式距离 略 街区距离 两个像素点X方向和Y方向的距离之和。欧式距离表示的是从一个像素点到

图像中两个像素之间的距离有多种定义方式,图像处理中常用的距离有欧式距离、街区距离棋盘距离

欧式距离 略

街区距离

两个像素点X方向和Y方向的距离之和。欧式距离表示的是从一个像素点到另一个像素点的最短距离,然而有时我们并不能以两个点之间连线的方向前进,例如在一个城市内两点之间的连线可能存在障碍物的阻碍,因此从一个点到另一个点需要沿着街道行走,因此这种距离的度量方式被称为街区距离。街区距离就是由一个像素点到另一个像素点需要沿着X方向和Y方向一共行走的距离,数学表示形式如式所示。

棋盘距离

两个像素点X方向距离和Y方向距离的最大值。与街区距离相似,棋盘距离也是假定两个像素点之间不能够沿着连线方向靠近,像素点只能沿着X方向和Y方向移动,但是棋盘距离并不是表示由一个像素点移动到另一个像素点之间的距离,而是表示两个像素点移动到同一行或者同一列时需要移动的最大距离,数学表示形式如式所示。


CV_EXPORTS_AS(distanceTransfORMWithLabels) void distanceTransform( InputArray src, OutputArray dst,
                                     OutputArray labels, int distanceType, int maskSize,
                                     int labelType = DIST_LABEL_CCOMP );
  • src:输入图像,数据类型为CV_8U的单通道图像
  • dst:输出图像,与输入图像具有相同的尺寸,数据类型为CV_8U或者CV_32F的单通道图像。
  • labels:二维的标签数组(离散Voronoi图),与输入图像具有相同的尺寸,数据类型为CV_32S的单通道数据。
  • distanceType:选择计算两个像素之间距离方法的标志,其常用的距离度量方法在表6-1给出。
  • maskSize:距离变换掩码矩阵的大小,参数可以选择的尺寸为DIST_MASK_3(3×3)和DIST_MASK_5(5×5).
  • labelType:要构建的标签数组的类型,可以选择的参数在表给出。 

  • 该函数用于实现图像的距离变换,即统计图像中所有像素距离0像素的最小距离。
  • 函数的第一个参数为待距离变换的输入图像,输入图像要求必须是CV_8U的单通道图像。
  • 函数第二个参数是原图像距离变换后的输出图像,与输入图像具有相同的尺寸,图像中每个像素值表示该像素在原图像中距离0像素的最小距离。由于图像的尺寸可能大于256,因此图像中某个像素距离0像素的最近距离有可能会大于255,为了能够正确的统计出每一个像素距离0像素的最小距离,输出图像的数据类型可以选择CV_8U或者CV_32F。
  • 函数第三个参数是原图像的Voronoi图,输出图像是数据类型为CV_32S单通道图像,图像尺寸与输入图像相同。
  • 函数第四个参数是距离变换过程中使用的距离种类,常用的距离为欧式距离(DIST_L2)、街区距离(DIST_L1)和棋盘距离(DIST_C)。
  • 函数第五个参数是求取路径时候的掩码尺寸,该尺寸与选择的距离种类有着密切的关系,当选择使用街区距离时,掩码尺寸选择3×3还是5×5对计算结果都没有影响,因此为了加快函数运算速度,默认选择掩码尺寸为3×3;当选择欧式距离时,掩码尺寸为3×3时是粗略的计算两个像素之间的距离,而当掩码尺寸为5×5时是精确的计算两个像素之间的距离,精确计算与粗略计算两者之间存在着较大的差异,因此在使用欧式距离时推荐使用5×5掩码;当选择棋盘距离时,掩码的尺寸对计算结果也没有影响,因此可以随意选择。
  • 函数的最后一个参数为构建标签数组的类型,当labelTypeDIST_LABEL_CCOMP时,该函数会自动在输入图像中找到0像素的连通分量,并用不同的标签标记它们。当labelTypeDIST_LABEL_CCOMP时,该函数扫描输入图像并用不同的标签标记所有0像素。

该函数原型在对图像进行距离变换的同时会生成Voronoi图,但是有时只是为了实现对图像的距离变换,并不需要使用Voronoi图,而使用该函数必须要求创建一个Mat类变量用于存放Voronoi图,占用了内存资源,因此distanceTransform()函数的第二种函数原型中取消了生成Voronoi图,只输出距离变换后的图像


void distanceTransform( InputArray src, OutputArray dst,
            int distanceType, int maskSize, int dstType=CV_32F); 
  • src:输入图像,数据类型为CV_8U的单通道图像
  • dst:输出图像,与输入图像具有相同的尺寸,数据类型为CV_8U或者CV_32F的单通道图像。
  • distanceType:选择计算两个像素之间距离方法的标志,其常用的距离度量方法在表6-1给出。
  • maskSize:距离变换掩码矩阵的大小,参数可以选择的尺寸为DIST_MASK_3(3×3)和DIST_MASK_5(5×5)。
  • dstType:输出图像的数据类型,可以是CV_8U或者CV_32F。

该函数原型中的主要参数含义与前一种函数原型相同,前两个参数为输入图像和输出图像,第三个参数和为距离变换过程中使用的距离种类。函数中第四个参数是距离变换掩码矩阵的大小,由于街区距离(Dist_L1)和棋盘距离(Dist_C)对掩模尺寸没有要求,因此该参数在选择街区距离和棋盘距离时被强制设置为3,同样掩模尺寸的大小对欧式距离(Dist_L2)计算的精度有影响,为了获取较为精确的时,一般使用5×5的掩模矩阵。函数最后一个参数是输出图像的数据类型,虽然可以在CV_8U和CV_32F两个类型中任意选择,但是图像输出时实际的数据类型与距离变换时选择的距离种类有着密切的联系,CV_8U只能使用在计算街区距离的条件下,当计算欧式距离和棋盘距离时,即使该参数设置为CV_8U,实际的输出图像的数据类型也是CV_32F。

简单示例 


//
// Created by smallflyfly on 2021/6/15.
//
 
#include "OpenCV2/opencv.hpp"
#include "opencv2/highgui.hpp"
#include "utils.hpp"
 
#include <iOStream>
 
using namespace std;
using namespace cv;
 
int main() {
 
    // 自定义矩阵
    Mat a = (Mat_<uchar>(5, 5) <<
            1,1,1,1,1,
            1,1,1,1,1,
            1,1,0,1,1,
            1,1,1,1,1,
            1,1,1,1,1
            );
    Mat distL1, distL2, distC;
    distanceTransform(a, distL1, DIST_L1, 3, CV_8U);
    distanceTransform(a, distL2, DIST_L2, 5, CV_8U);
    distanceTransform(a, distC, DIST_C, 3, CV_8U);
 
    cout << distL1 << endl;
    cout << distL2 << endl;
    cout << distC << endl;
 
    Mat im = imread("test.jpg", IMREAD_GRAYSCALE);
    if (im.empty()) {
        cerr << "image file read error" << endl;
        return -1;
    }
    resize(im, im, Size(0, 0), 0.5, 0.5);
 
    // 转为二值图像
    Mat im1, im2;
    threshold(im, im1, 125 ,255, THRESH_BINARY);
    threshold(im, im2, 125, 255, THRESH_BINARY_INV);
 
    Mat dist1, dist2;
    distanceTransform(im1, dist1, DIST_L1, 3, CV_32F);
    distanceTransform(im2, dist2, DIST_L1, 3, CV_8U);
 
    showImage("im1", im1);
    showImage("dist1", dist1);
    showImage("im2", im2);
    showImage("dist2", dist2);
 
    waiTKEy(0);
    destroyAllwindows();
 
    return 0;
}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持编程网。

--结束END--

本文标题: OpenCV实现图像距离变换

本文链接: https://lsjlt.com/news/128934.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • OpenCV实现图像距离变换
    图像中两个像素之间的距离有多种定义方式,图像处理中常用的距离有欧式距离、街区距离和棋盘距离 欧式距离 略 街区距离 两个像素点X方向和Y方向的距离之和。欧式距离表示的是从一个像素点到...
    99+
    2024-04-02
  • OpenCV基于距离变换和分水岭实现图像分割
    目录一.图像分割二.基于距离变换和分水岭的图像分割代码实现图像处理效果一.图像分割 图像分割是根据灰度、颜色、纹理和形状等特征,把图像分成若干个特定的、具有独特性质的区域,这些特征在...
    99+
    2024-04-02
  • opencv实现图像几何变换
    本文实例为大家分享了opencv实现图像几何变换的具体代码,供大家参考,具体内容如下 图像伸缩(cv2.resize) 图像的扩大与缩小有专门的一个函数,cv2.resize(),那...
    99+
    2024-04-02
  • opencv如何实现图像几何变换
    这篇文章给大家分享的是有关opencv如何实现图像几何变换的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。图像伸缩(cv2.resize)图像的扩大与缩小有专门的一个函数,cv2.resize(),那么关于伸缩需要...
    99+
    2023-06-14
  • Python OpenCV实现图像傅里叶变换
    目录二维离散傅里叶变换(DFT)OpenCV 实现图像傅里叶变换(cv.dft)示例代码二维离散傅里叶变换(DFT) 对于二维图像处理,通常使用 x , y x, yx,y 表示离散...
    99+
    2024-04-02
  • Python OpenCV如何实现图像傅里叶变换
    这篇文章给大家分享的是有关Python OpenCV如何实现图像傅里叶变换的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。二维离散傅里叶变换(DFT)对于二维图像处理,通常使用 x , y x, yx,y...
    99+
    2023-06-28
  • OpenCV实现常见的四种图像几何变换
    目录准备图片1. 缩放 cv2.resize()方法2. 翻转 cv2.flip()方法3. 仿射变换 warpAffine()方法3.1 平移3.2 旋转3.3 倾斜4. 透视准备...
    99+
    2024-04-02
  • C++ opencv图像处理实现灰度变换示例
    目录灰度变换概念灰度变换的作用灰度变换的方法灰度化灰度的概念对彩色图进行灰度化1.加权平均值法2.取最大值3.平均值灰度的线性变换1.线性变换2.分段线性变换灰度的非线性变换1.对数...
    99+
    2024-04-02
  • C++opencv图像处理实现图片几何变换示例
    目录简介一、图像平移1.图像平移代码 (不改变图像大小)2.图像平移代码 (改变图像大小)二、图像旋转1.图像旋转函数2.仿射变换函数3.代码三、图像缩放1.图像缩放函数2.图像缩小...
    99+
    2024-04-02
  • C++ opencv图像处理怎么实现图片几何变换
    本文小编为大家详细介绍“C++ opencv图像处理怎么实现图片几何变换”,内容详细,步骤清晰,细节处理妥当,希望这篇“C++ opencv图像处理怎么实现图片几何变换”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入...
    99+
    2023-06-30
  • OpenCV实现单目摄像头对图像目标测距
    使用opencv对单目摄像头中的目标实现测量距离(python实现),供大家参考,具体内容如下 1.方法介绍: 根据相似三角形的方法: F = P×D / W , 其中W...
    99+
    2024-04-02
  • OpenCV如何通过透视变换实现矫正图像
    这篇“OpenCV如何通过透视变换实现矫正图像”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“OpenCV如何通过透视变换实现...
    99+
    2023-07-05
  • OpenCV怎么通过透视变换实现矫正图像
    这篇“OpenCV怎么通过透视变换实现矫正图像”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“OpenCV怎么通过透视变换实现...
    99+
    2023-07-05
  • OpenCV图像变换之傅里叶变换的一些应用
    目录前言1. 效果图 2. 原理 3. 源码 3.1 Numpy实现傅里叶变换3.2 OpenCV实现傅里叶变换3.3 HPF or LPF?参考总结前言 这篇博客将介绍OpenCV...
    99+
    2024-04-02
  • OpenCV图像处理之七种常用图像几何变换
    目录0 程序环境与所学函数1 裁剪、放大、缩小2 平移变换3 错切变换4 镜像变换5 旋转变换6 透视变换7 最近邻插值、双线性插值0 程序环境与所学函数 本章程序运行需要导入下面三...
    99+
    2024-04-02
  • Python使用 OpenCV 进行图像投影变换
    投影变换(仿射变换) 在数学中,线性变换是将一个向量空间映射到另一个向量空间的函数,通常由矩阵实现。如果映射保留向量加法和标量乘法,则映射被认为是线性变换。 要将线性变换应用于向量...
    99+
    2024-04-02
  • OpenCV实现图像膨胀
    图像的膨胀与图像腐蚀是一对相反的过程,与图像腐蚀相似,图像膨胀同样需要结构元素用于控制图像膨胀的效果。结构元素可以任意指定结构的中心点,并且结构元素的尺寸和具体内容都可以根据需求自己...
    99+
    2024-04-02
  • OpenCV实现图像腐蚀
    图像的腐蚀过程与图像的卷积操作类似,都需要模板矩阵来控制运算的结果,在图像的腐蚀和膨胀中这个模板矩阵被称为结构元素。与图像卷积相同,结构元素可以任意指定图像的中心点,并且结构元素的尺...
    99+
    2024-04-02
  • openCV实现图像分割
    本次实验为大家分享了openCV实现图像分割的具体实现代码,供大家参考,具体内容如下 一.实验目的 进一步理解图像的阈值分割方法和边缘检测方法的原理。 掌握图像基本全局阈值方法和最大...
    99+
    2024-04-02
  • opencv实现图像校正
    本文实例为大家分享了opencv实现图像校正的具体代码,供大家参考,具体内容如下 1.引言:python实现倾斜图像校正操作 2.思路流程: (1)读入,灰度化;(2)高斯模糊;(3...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作