返回顶部
首页 > 资讯 > 后端开发 > Python >pytorch中F.avg_pool1d()和F.avg_pool2d()的使用操作
  • 905
分享到

pytorch中F.avg_pool1d()和F.avg_pool2d()的使用操作

2024-04-02 19:04:59 905人浏览 独家记忆

Python 官方文档:入门教程 => 点击学习

摘要

F.avg_pool1d()数据是三维输入 input维度: (batch_size,channels,width)channel可以看成高度 kenerl维度:(一维:表示widt

F.avg_pool1d()数据是三维输入

input维度: (batch_size,channels,width)channel可以看成高度

kenerl维度:(一维:表示width的跨度)channel和输入的channel一致可以认为是矩阵的高度

假设kernel_size=2,则每俩列相加求平均,stride默认和kernel_size保持一致,越界则丢弃(下面表示1,2列和3,4列相加求平均)


input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input)
m = F.avg_pool1d(input,kernel_size=2)
m

tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.0000, 1.0000],
         [1.0000, 1.0000],
         [0.0000, 0.5000],
         [1.0000, 1.0000],
         [1.0000, 1.0000]]])

假设kenerl_size=3,表示前3列相加求平均,后面的不足3列丢弃


input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input)
m = F.avg_pool1d(input,kernel_size=3)
m
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.],
         [1.],
         [0.],
         [1.],
         [1.]]])

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input)
m = F.avg_pool1d(input,kernel_size=4)
m
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.0000],
         [1.0000],
         [0.2500],
         [1.0000],
         [1.0000]]])

假设stride=1每次移动一个步伐


input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input)
m = F.avg_pool1d(input,kernel_size=2,stride=1)
m
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.0000, 1.0000, 1.0000, 1.0000],
         [1.0000, 1.0000, 1.0000, 1.0000],
         [0.0000, 0.0000, 0.5000, 1.0000],
         [1.0000, 1.0000, 1.0000, 1.0000],
         [1.0000, 1.0000, 1.0000, 1.0000]]])
 
input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input)
m = F.avg_pool1d(input,kernel_size=4,stride=1)
m
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.0000, 1.0000],
         [1.0000, 1.0000],
         [0.2500, 0.5000],
         [1.0000, 1.0000],
         [1.0000, 1.0000]]])

F.avg_pool2d()数据是四维输入

input维度: (batch_size,channels,height,width)

kenerl维度:(二维:表示width的跨度)channel和输入的channle一致,如果数据是三维,则channel为1.(如果只写一个数n,kenerl=(n,n))

stride默认和kenerl一致,这是个二维的,所以在height和width上均和kenerl一致,越界同样丢弃。

跟cnn卷积一致


input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input.size())
print(input)
m = F.avg_pool2d(input,kernel_size=(4,4))
m
torch.Size([1, 5, 5])
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[0.8125]]])

input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input.size())
print(input)
m = F.avg_pool2d(input,kernel_size=(4,4),stride=1)
m
torch.Size([1, 5, 5])
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[0.8125, 0.8750],
         [0.8125, 0.8750]]])

如果求列的平均kenerl=(1,5),此时默认stride=(1,5)


input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input.size())
print(input)
m = F.avg_pool2d(input,kernel_size=(1,5))
m
torch.Size([1, 5, 5])
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[1.0000],
         [1.0000],
         [0.4000],
         [1.0000],
         [1.0000]]])

如果求行的平均kenerl=(5,1),此时默认stride=(5,1),用卷积的概念取思考


input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float()
print(input.size())
print(input)
m = F.avg_pool2d(input,kernel_size=(5,1))
m
torch.Size([1, 5, 5])
tensor([[[1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.],
         [0., 0., 0., 1., 1.],
         [1., 1., 1., 1., 1.],
         [1., 1., 1., 1., 1.]]])
tensor([[[0.8000, 0.8000, 0.8000, 1.0000, 1.0000]]])

对于四维的数据,channel默认和输入一致


input=torch.randn(10,3,4,4)
m=F.avg_pool2d(input,(4,4))
print(m.size())
torch.Size([10, 3, 1, 1])

补充:PyTorch中AdaptiveAvgPool函数解析

自适应池化(AdaptiveAvgPool1d):

对输入信号,提供1维的自适应平均池化操作 对于任何输入大小的输入,可以将输出尺寸指定为H*W,但是输入和输出特征的数目不会变化。


torch.nn.AdaptiveAvgPool1d(output_size)
#output_size:输出尺寸

对输入信号,提供1维的自适应平均池化操作 对于任何输入大小的输入,可以将输出尺寸指定为H*W,但是输入和输出特征的数目不会变化。


# target output size of 5
m = nn.AdaptiveAvgPool1d(5)
input = autograd.Variable(torch.randn(1, 64, 8))
output = m(input)

自适应池化(AdaptiveAvgPool2d):


class torch.nn.AdaptiveAvgPool2d(output_size)

对输入信号,提供2维的自适应平均池化操作 对于任何输入大小的输入,可以将输出尺寸指定为H*W,但是输入和输出特征的数目不会变化。

参数:

output_size: 输出信号的尺寸,可以用(H,W)表示H*W的输出,也可以使用耽搁数字H表示H*H大小的输出


# target output size of 5x7
m = nn.AdaptiveAvgPool2d((5,7))
input = autograd.Variable(torch.randn(1, 64, 8, 9))
# target output size of 7x7 (square)
m = nn.AdaptiveAvgPool2d(7)
input = autograd.Variable(torch.randn(1, 64, 10, 9))
output = m(input)

自适应池化的数学解释:

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。

--结束END--

本文标题: pytorch中F.avg_pool1d()和F.avg_pool2d()的使用操作

本文链接: https://lsjlt.com/news/126557.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • pytorch中F.avg_pool1d()和F.avg_pool2d()的使用操作
    F.avg_pool1d()数据是三维输入 input维度: (batch_size,channels,width)channel可以看成高度 kenerl维度:(一维:表示widt...
    99+
    2024-04-02
  • Pytorch使用shuffle打乱数据的操作
    这个东西算是我被这个shuffle坑了的一个总结吧! 首先我得告诉你一件事,那就是pytorch中的tensor,如果直接使用random.shuffle打乱数据,或者使用下面的方式...
    99+
    2024-04-02
  • PyTorch中怎么创建和操作张量
    要在PyTorch中创建和操作张量,首先需要导入torch库。以下是一些常用的创建和操作张量的方法: 创建张量: import ...
    99+
    2024-03-05
    PyTorch
  • PyTorch中的CUDA的操作方法
    目录前言一.常见CPU和GPU操作命令二.CPU和GPU设备上的Tensor1.Tensor从CPU拷贝到GPU上2.直接在GPU上创建Tensor3.CUDA Streams三.固...
    99+
    2024-04-02
  • 使用Pytorch训练two-head网络的操作
    之前有写过一篇如何使用Pytorch实现two-head(多输出)模型 在那篇文章里,基本把two-head网络以及构建讲清楚了(如果不清楚请先移步至那一篇博文)。 但是我后来发现之...
    99+
    2024-04-02
  • pytorch 使用半精度模型部署的操作
    背景 pytorch作为深度学习的计算框架正得到越来越多的应用. 我们除了在模型训练阶段应用外,最近也把pytorch应用在了部署上. 在部署时,为了减少计算量,可以考虑使用16位浮...
    99+
    2024-04-02
  • Pytorch如何使用shuffle打乱数据的操作
    这篇文章主要介绍Pytorch如何使用shuffle打乱数据的操作,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!首先我得告诉你一件事,那就是pytorch中的tensor,如果直接使用random.shuffle打乱...
    99+
    2023-06-15
  • pytorch中LN(LayerNorm)及Relu和其变相的输出操作
    主要就是了解一下pytorch中的使用layernorm这种归一化之后的数据变化,以及数据使用relu,prelu,leakyrelu之后的变化。 import torch im...
    99+
    2024-04-02
  • pytorch教程之Tensor的值及操作使用学习
    目录1、Tensors建立5*3的矩阵,未初始化建立随机初始化矩阵建立零初始化矩阵,数据类型是Long建立一个tensor数据来源于data获取tensor的size2、对Tenso...
    99+
    2024-04-02
  • pytorch模型的保存和加载、checkpoint操作
    其实之前笔者写代码的时候用到模型的保存和加载,需要用的时候就去度娘搜一下大致代码,现在有时间就来整理下整个pytorch模型的保存和加载,开始学习把~ pytorch的模型和参数是分...
    99+
    2024-04-02
  • pytorch中的model.eval()和BN层的使用
    看代码吧~ class ConvNet(nn.module): def __init__(self, num_class=10): super(ConvN...
    99+
    2024-04-02
  • PyTorch中的train()、eval()和no_grad()的使用
    目录什么是train()函数?什么是eval()函数?什么是no_grad()函数?train()、eval()和no_grad()函数的联系总结在PyTorch中,train()、...
    99+
    2023-05-14
    PyTorch train() eval() no_grad()
  • 使用Pytorch实现two-head(多输出)模型的操作
    如何使用Pytorch实现two-head(多输出)模型 1. two-head模型定义 先放一张我要实现的模型结构图: 如上图,就是一个two-head模型,也是一个但输入多输出...
    99+
    2024-04-02
  • Pytorch 中net.train 和 net.eval的使用说明
    在训练模型时会在前面加上: model.train() 在测试模型时在前面使用: model.eval() 同时发现,如果不写这两个程序也可以运行,这是因为这两个方法是针...
    99+
    2024-04-02
  • Pytorch中Softmax和LogSoftmax的使用详解
    一、函数解释 1.Softmax函数常用的用法是指定参数dim就可以: (1)dim=0:对每一列的所有元素进行softmax运算,并使得每一列所有元素和为1。 (2)dim=1:对...
    99+
    2024-04-02
  • Pytorch中的model.train()和model.eval()怎么使用
    本文小编为大家详细介绍“Pytorch中的model.train()和model.eval()怎么使用”,内容详细,步骤清晰,细节处理妥当,希望这篇“Pytorch中的model.train()和model.eval()怎么使用”文章能帮助...
    99+
    2023-07-06
  • TensorFlow和keras中GPU使用的设置操作
    1. 训练运行时候指定GPU 运行时候加一行代码: CUDA_VISIBLE_DEVICES=1 python train.py 2. 运行过程中按需或者定量分配GPU ten...
    99+
    2024-04-02
  • Pytorch中Tensor基本操作的示例分析
    这篇文章将为大家详细讲解有关Pytorch中Tensor基本操作的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。一、tensor的创建1.使用tensor小写字母的tensor接收具体的数据,可以...
    99+
    2023-06-25
  • 在pytorch中计算准确率,召回率和F1值的操作
    看代码吧~ predict = output.argmax(dim = 1) confusion_matrix =torch.zeros(2,2) for t, p in zip...
    99+
    2024-04-02
  • Pytorch BCELoss和BCEWithLogitsLoss的使用
    BCELoss 在图片多标签分类时,如果3张图片分3类,会输出一个3*3的矩阵。 先用Sigmoid给这些值都搞到0~1之间: 假设Target是: 下面我们用BCELoss...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作