返回顶部
首页 > 资讯 > 后端开发 > Python >pytorch教程之Tensor的值及操作使用学习
  • 411
分享到

pytorch教程之Tensor的值及操作使用学习

2024-04-02 19:04:59 411人浏览 泡泡鱼

Python 官方文档:入门教程 => 点击学习

摘要

目录1、Tensors建立5*3的矩阵,未初始化建立随机初始化矩阵建立零初始化矩阵,数据类型是Long建立一个tensor数据来源于data获取tensor的size2、对Tenso

参考网址

1、Tensors

Tensors are similar to NumPy's ndaeeays,不同的是可以在GPU上使用和加速计算。
导入包


from __future__ import print_function
import torch

建立5*3的矩阵,未初始化


x = torch.empty(5,3)
print(x)

out


tensor([[ 1.4395e-36,  4.5848e-41,  1.4395e-36],
        [ 4.5848e-41,  1.4395e-36,  4.5848e-41],
        [ 1.4395e-36,  4.5848e-41,  2.8026e-45],
        [-1.9501e+00,  8.5165e+23,  0.0000e+00],
        [ 2.5223e-43,  0.0000e+00,  0.0000e+00]])

建立随机初始化矩阵


x = torch.rand(5,3)
print(x)

out


tensor([[ 0.8074,  0.9175,  0.8109],
        [ 0.3313,  0.5902,  0.9179],
        [ 0.6562,  0.3283,  0.9798],
        [ 0.8218,  0.0817,  0.4454],
        [ 0.5934,  0.0040,  0.3411]])

建立零初始化矩阵,数据类型是Long


...
x = torch.zeros(5,3,dtype = torch.long) 
print(x)
...

out


tensor([[ 0,  0,  0],
        [ 0,  0,  0],
        [ 0,  0,  0],
        [ 0,  0,  0],
        [ 0,  0,  0]])

建立一个tensor数据来源于data


x = torch.tensor([5.5,3])
print(x)

out


tensor([ 5.5000,  3.0000])

在原有tnesor的基础上形成新的tensor,会继承原有tensor的shapee和dtype等属性,当然我么也可以修改这些属性


x = x.new_ones(5,3,dtype = torch.double)
print(x)
x = torch.randn_like(x,dype = torch.float)
print(x)

out


tensor([[ 1.,  1.,  1.],
        [ 1.,  1.,  1.],
        [ 1.,  1.,  1.],
        [ 1.,  1.,  1.],
        [ 1.,  1.,  1.]], dtype=torch.float64)
tensor([[-0.0730, -0.0716, -0.8259],
        [-1.7004,  0.8790, -0.0659],
        [-0.8969,  0.8736, -0.6035],
        [-0.1539, -2.9178, -0.7456],
        [-0.0245,  0.4075,  1.4904]])

获取tensor的size


print(x.size())

out


torch.Size([5, 3])

torch.size是一个元组,支持所有元组(tuple)的操作

2、对Tensor的操作

实现加法的四种方式

方法一L


print(x+y)

方法二


print(torch.add(x,y))

方法三:输出给额外的tensor


result = torch.empty(5,3)
torch.add(x,y ,out= result)
print (result)

方法四:原地替换-结果存放在y中


print(y)

所有原地替换

所有原地替换tensor的操作都有后缀,比如x.copy(y),会改变x

使用标准的numpy操作


print(x[:1]

out


tensor([-0.0716,  0.8790,  0.8736, -2.9178,  0.4075])

使用torch.view 改变tensor的形状


x = torch.randn(4,4)
y = x.view(16)
z = x.view(-1,8)   # the size -1 is inferred from other dimensions
print (x.size(),y.xize(),z.size())

out


torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])

tensor转化为numpy的数字,使用item


x = torch.rnadn(1)
print(x)
print(x.item())

Torch Tensor 和numpy的相互转换


a = torch.ones(5)
print (a) 

out


tensor([ 1.,  1.,  1.,  1.,  1.])

并且改变tensor的值会同时改变numpy的值


a.add_(1)
print(a)
print(b)

out


tensor([ 2.,  2.,  2.,  2.,  2.])
[ 2.  2.  2.  2.  2.]

将numpy array转化为pytorch Tensor


import numpy as np
a = np.ones(5)
b = torch.from_numpy(a)
np.add(a,1,out = a )
print(a)
print(b)

out


[ 2.  2.  2.  2.  2.]
tensor([ 2.,  2.,  2.,  2.,  2.], dtype=torch.float64)

所有在cpu上的tensor都支持numpy转化,除了char形的tensor

CUDA Tensors

Tensors 可以被移动到其他设备使用.to的方法


...
if torch.cuda.is_avaulable(): 
device = torch.device(“cuda”) 
y = torch.ones_like(x,device = devcie) 
x= x.to(device) 
z = x+y 
print(z) 
print(z.to(“cpu”,torch.double)) 
...

out


tensor([-1.0620], device='cuda:0')
tensor([-1.0620], dtype=torch.float64)

以上就是pytorch教程之Tensor学习笔记的详细内容,更多关于pytorch教程的资料请关注编程网其它相关文章!

--结束END--

本文标题: pytorch教程之Tensor的值及操作使用学习

本文链接: https://lsjlt.com/news/134896.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作