返回顶部
首页 > 资讯 > 后端开发 > Python >pandas中字典和dataFrame的相互转换
  • 636
分享到

pandas中字典和dataFrame的相互转换

2024-04-02 19:04:59 636人浏览 泡泡鱼

Python 官方文档:入门教程 => 点击学习

摘要

目录一、字典转dataFrame1、字典转dataFrame比较简单,直接给出示例:二、dataFrame转字典1、DataFrame.to_dict() 函数介绍2、orient

一、字典转dataFrame

1、字典转dataFrame比较简单,直接给出示例:

import pandas as pd
dic = {
'name':['张三','李四','王二','麻子','小红','小兰','小玉','小强','小娟','小明'],
'num':[802,807,801,803,806,805,808,809,800,804],
'height': [183, 161, 163, 163, 156, 186, 184, 154, 153, 174],
'weight': [87, 60, 71, 74, 45, 50, 47, 67, 49, 70],
'gender': ['男', '男', '男', '男', '女', '女', '女', '男', '女', '男'],
'age': [25, 30, 25, 26, 27, 20, 23, 26, 30, 30]
}
df=pd.DataFrame(dic)
print(df)

结果:

二、dataFrame转字典

1、DataFrame.to_dict() 函数介绍

pandas中经常用的是 DataFrame.to_dict() 函数将dataFrame转化为字典类型(字典的查询速度很快

函数DataFrame.to_dict(orient=‘dict’, into=<class ‘dict’>)

  • orient =‘dict’,是函数默认的,转化后的字典形式:{column(列名) : {index(行名) : value(值)}};
  • orient =‘list’ ,转化后的字典形式:{column(列名) :{[values](值)}};
  • orient =‘series’ ,转化后的字典形式:{column(列名) : Series (values) (值)};
  • orient =‘split’ ,转化后的字典形式:{‘index’ : [index],‘columns’ :[columns],’data‘ : [values]};
  • orient =‘records’ ,转化后是 list形式:[{column(列名) :value(值)}…{column:value}];
  • orient =‘index’ ,转化后的字典形式:{index(值) :{column(列名) : value(值)}};

dataFrame.to_dict() 结果默认 index 是 key ,其他字段是和 index 对应的 value

2、orient =‘dict’

orient =‘dict’ 是函数默认的,转化后的字典形式:{column(列名) : {index(行名) : value(值)}}

dic1 = df.to_dict()
print(dic1)

结果:

{
'name': {0: '张三', 1: '李四', 2: '王二', 3: '麻子', 4: '小红', 5: '小兰', 6: '小玉', 7: '小强', 8: '小娟', 9: '小明'}, 
'num': {0: 802, 1: 807, 2: 801, 3: 803, 4: 806, 5: 805, 6: 808, 7: 809, 8: 800, 9: 804}, 
'height': {0: 183, 1: 161, 2: 163, 3: 163, 4: 156, 5: 186, 6: 184, 7: 154, 8: 153, 9: 174}, 
'weight': {0: 87, 1: 60, 2: 71, 3: 74, 4: 45, 5: 50, 6: 47, 7: 67, 8: 49, 9: 70}, 
'gender': {0: '男', 1: '男', 2: '男', 3: '男', 4: '女', 5: '女', 6: '女', 7: '男', 8: '女', 9: '男'}, 
'age': {0: 25, 1: 30, 2: 25, 3: 26, 4: 27, 5: 20, 6: 23, 7: 26, 8: 30, 9: 30}
}

3、 orient =‘list’

orient =‘list’ ,转化后的字典形式:{column(列名) :{[values](值)}};

dic1 = df.to_dict('list')
print(dic1)

结果:

{
'name': ['张三', '李四', '王二', '麻子', '小红', '小兰', '小玉', '小强', '小娟', '小明'], 
'num': [802, 807, 801, 803, 806, 805, 808, 809, 800, 804], 
'height': [183, 161, 163, 163, 156, 186, 184, 154, 153, 174], 
'weight': [87, 60, 71, 74, 45, 50, 47, 67, 49, 70], 
'gender': ['男', '男', '男', '男', '女', '女', '女', '男', '女', '男'], 
'age': [25, 30, 25, 26, 27, 20, 23, 26, 30, 30]
}

4、orient =‘series’

orient =‘series’ ,转化后的字典形式:{column(列名) : Series (values) (值)}

dic1 = df.to_dict('series')
print(dic1)

结果:

{
'name': 
0    张三
1    李四
2    王二
3    麻子
4    小红
5    小兰
6    小玉
7    小强
8    小娟
9    小明
Name: name, dtype: object, 
'num': 
0    802
1    807
2    801
3    803
4    806
5    805
6    808
7    809
8    800
9    804
Name: num, dtype: int64, 
'height':
0    183
1    161
2    163
3    163
4    156
5    186
6    184
7    154
8    153
9    174
Name: height, dtype: int64, 
'weight': 
0    87
1    60
2    71
3    74
4    45
5    50
6    47
7    67
8    49
9    70
Name: weight, dtype: int64, 
'gender': 
0    男
1    男
2    男
3    男
4    女
5    女
6    女
7    男
8    女
9    男
Name: gender, dtype: object, 
'age': 
0    25
1    30
2    25
3    26
4    27
5    20
6    23
7    26
8    30
9    30
Name: age, dtype: int64}

5、orient =‘split’

orient =‘split’ ,转化后的字典形式:{‘index’ : [index],‘columns’ :[columns],’data‘ : [values]}

{'index': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 
'columns': ['name', 'num', 'height', 'weight', 'gender', 'age'], 
'data': [
['张三', 802, 183, 87, '男', 25],
['李四', 807, 161, 60, '男', 30], 
['王二', 801, 163, 71, '男', 25], 
['麻子', 803, 163, 74, '男', 26], 
['小红', 806, 156, 45, '女', 27], 
['小兰', 805, 186, 50, '女', 20], 
['小玉', 808, 184, 47, '女', 23], 
['小强', 809, 154, 67, '男', 26], 
['小娟', 800, 153, 49, '女', 30], 
['小明', 804, 174, 70, '男', 30]
]
}

6、orient =‘records’

orient =‘records’ ,转化后是 list形式:[{column(列名) :value(值)}…{column:value}]

dic1 = df.to_dict('records')
print(dic1)

结果:

[
{'name': '张三', 'num': 802, 'height': 183, 'weight': 87, 'gender': '男', 'age': 25}, 
{'name': '李四', 'num': 807, 'height': 161, 'weight': 60, 'gender': '男', 'age': 30}, 
{'name': '王二', 'num': 801, 'height': 163, 'weight': 71, 'gender': '男', 'age': 25}, 
{'name': '麻子', 'num': 803, 'height': 163, 'weight': 74, 'gender': '男', 'age': 26}, 
{'name': '小红', 'num': 806, 'height': 156, 'weight': 45, 'gender': '女', 'age': 27}, 
{'name': '小兰', 'num': 805, 'height': 186, 'weight': 50, 'gender': '女', 'age': 20}, 
{'name': '小玉', 'num': 808, 'height': 184, 'weight': 47, 'gender': '女', 'age': 23}, 
{'name': '小强', 'num': 809, 'height': 154, 'weight': 67, 'gender': '男', 'age': 26}, 
{'name': '小娟', 'num': 800, 'height': 153, 'weight': 49, 'gender': '女', 'age': 30}, 
{'name': '小明', 'num': 804, 'height': 174, 'weight': 70, 'gender': '男', 'age': 30}
]

7、orient =‘index’

orient =‘index’ ,转化后的字典形式:{index(值) :{column(列名) : value(值)}}

dic1 = df.to_dict('index')
print(dic1)

结果:

{
0: {'name': '张三', 'num': 802, 'height': 183, 'weight': 87, 'gender': '男', 'age': 25}, 
1: {'name': '李四', 'num': 807, 'height': 161, 'weight': 60, 'gender': '男', 'age': 30}, 
2: {'name': '王二', 'num': 801, 'height': 163, 'weight': 71, 'gender': '男', 'age': 25}, 
3: {'name': '麻子', 'num': 803, 'height': 163, 'weight': 74, 'gender': '男', 'age': 26}, 
4: {'name': '小红', 'num': 806, 'height': 156, 'weight': 45, 'gender': '女', 'age': 27}, 
5: {'name': '小兰', 'num': 805, 'height': 186, 'weight': 50, 'gender': '女', 'age': 20}, 
6: {'name': '小玉', 'num': 808, 'height': 184, 'weight': 47, 'gender': '女', 'age': 23}, 
7: {'name': '小强', 'num': 809, 'height': 154, 'weight': 67, 'gender': '男', 'age': 26}, 
8: {'name': '小娟', 'num': 800, 'height': 153, 'weight': 49, 'gender': '女', 'age': 30}, 
9: {'name': '小明', 'num': 804, 'height': 174, 'weight': 70, 'gender': '男', 'age': 30}
}

8、指定列为key生成字典的实现步骤(按行)

1、 set_index用于将想设置为key的列设置为数据框索引

 df.set_index("name", drop=True, inplace=True)
 # 其中 drop=True去重,inplace=True在原数据上更改

结果:

2、使用orient=index参数将索引用作字典键。

dictionary = df.to_dict(orient="index")
print(dictionary)

结果

{
'张三': {'num': 802, 'height': 183, 'weight': 87, 'gender': '男', 'age': 25}, 
'李四': {'num': 807, 'height': 161, 'weight': 60, 'gender': '男', 'age': 30}, 
'王二': {'num': 801, 'height': 163, 'weight': 71, 'gender': '男', 'age': 25}, 
'麻子': {'num': 803, 'height': 163, 'weight': 74, 'gender': '男', 'age': 26}, 
'小红': {'num': 806, 'height': 156, 'weight': 45, 'gender': '女', 'age': 27}, 
'小兰': {'num': 805, 'height': 186, 'weight': 50, 'gender': '女', 'age': 20}, 
'小玉': {'num': 808, 'height': 184, 'weight': 47, 'gender': '女', 'age': 23}, 
'小强': {'num': 809, 'height': 154, 'weight': 67, 'gender': '男', 'age': 26}, 
'小娟': {'num': 800, 'height': 153, 'weight': 49, 'gender': '女', 'age': 30}, 
'小明': {'num': 804, 'height': 174, 'weight': 70, 'gender': '男', 'age': 30}
}

3、将步骤1、2合起来写也可以,这里不修改源数据

dictionary = df.set_index("name", drop=True).to_dict(orient="index")

9、指定列为key,value生成字典的实现

1、指定一个列为key,一列为value

dictionary  = df.set_index("name")["num"].to_dict()
print(dictionary)

结果

{
'张三': 802, 
'李四': 807, 
'王二': 801, 
'麻子': 803, 
'小红': 806, 
'小兰': 805, 
'小玉': 808, 
'小强': 809, 
'小娟': 800, 
'小明': 804
}

2、指定多个列为key,一列为value

dictionary  = df.set_index(["name","num"])["weight"].to_dict()
print(dictionary)

结果:

{
('张三', 802): 87, 
('李四', 807): 60, 
('王二', 801): 71, 
('麻子', 803): 74, 
('小红', 806): 45, 
('小兰', 805): 50, 
('小玉', 808): 47, 
('小强', 809): 67, 
('小娟', 800): 49, 
('小明', 804): 70
}

3、指定一个列为key,多列为value

方法1(速度慢)

dictionary = {c0:[c1,c2] for c0,c1,c2 in zip(df['name'],df['num'],df['weight'])} 
print(dictionary)

方法2(速度快)

dictionary = df[["name",'num','weight']].set_index('name').T.to_dict('list')
print(dictionary)

结果:

{
'张三': [802, 87], 
'李四': [807, 60], 
'王二': [801, 71], 
'麻子': [803, 74], 
'小红': [806, 45], 
'小兰': [805, 50], 
'小玉': [808, 47], 
'小强': [809, 67], 
'小娟': [800, 49], 
'小明': [804, 70]
}

4、 指定多列为key,多列为value

dictionary = df[["name",'num','weight',"age"]].set_index(['name','num']).T.to_dict('list')
print(dictionary)

结果:

{
('张三', 802): [87, 25], 
('李四', 807): [60, 30], 
('王二', 801): [71, 25], 
('麻子', 803): [74, 26], 
('小红', 806): [45, 27], 
('小兰', 805): [50, 20], 
('小玉', 808): [47, 23], 
('小强', 809): [67, 26], 
('小娟', 800): [49, 30], 
('小明', 804): [70, 30]
}

参考https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_dict.html

总结

到此这篇关于pandas中字典和dataFrame相互转换的文章就介绍到这了,更多相关字典和dataFrame相互转换内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

--结束END--

本文标题: pandas中字典和dataFrame的相互转换

本文链接: https://lsjlt.com/news/120489.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作