返回顶部
首页 > 资讯 > 后端开发 > Python >python神经网络使用Keras进行模型的保存与读取
  • 385
分享到

python神经网络使用Keras进行模型的保存与读取

2024-04-02 19:04:59 385人浏览 独家记忆

Python 官方文档:入门教程 => 点击学习

摘要

目录学习前言Keras中保存与读取的重要函数1、model.save2、load_model全部代码学习前言 开始做项目的话,有些时候会用到别人训练好的模型,这个时候要学会load噢

学习前言

开始做项目的话,有些时候会用到别人训练好的模型,这个时候要学会load噢。

Keras中保存与读取的重要函数

1、model.save

model.save用于保存模型,在保存模型前,首先要利用pip install安装h5py的模块,这个模块在Keras的模型保存与读取中常常被使用,用于定义保存格式。

pip install h5py

完成安装后,可以通过如下函数保存模型。

model.save("./model.hdf5")

其中,model是已经训练完成的模型,save函数传入的参数就是保存后的位置+名字。

2、load_model

load_model用于载入模型。

具体使用方式如下:

model = load_model("./model.hdf5")

其中,load_model函数传入的参数就是已经完成保存的模型的位置+名字。./表示保存在当前目录。

全部代码

这是一个简单的手写体识别例子,在之前也讲解过如何构建

python神经网络学习使用Keras进行简单分类,在最后我添加上了模型的保存与读取函数。

import numpy as np
from keras.models import Sequential,load_model,save_model
from keras.layers import Dense,Activation ## 全连接层
from keras.datasets import mnist
from keras.utils import np_utils
from keras.optimizers import RMSprop
# 获取训练集
(X_train,Y_train),(X_test,Y_test) = mnist.load_data()
# 首先进行标准化 
X_train = X_train.reshape(X_train.shape[0],-1)/255
X_test = X_test.reshape(X_test.shape[0],-1)/255
# 计算cateGorical_crossentropy需要对分类结果进行categorical
# 即需要将标签转化为形如(nb_samples, nb_classes)的二值序列
Y_train = np_utils.to_categorical(Y_train,num_classes= 10)
Y_test = np_utils.to_categorical(Y_test,num_classes= 10)
# 构建模型
model = Sequential([
    Dense(32,input_dim = 784),
    Activation("relu"),
    Dense(10),
    Activation("softmax")
    ]
)
rmsprop = RMSprop(lr = 0.001,rho = 0.9,epsilon = 1e-08,decay = 0)
## compile
model.compile(loss = 'categorical_crossentropy',optimizer = rmsprop,metrics=['accuracy'])
print("\ntraining")
cost = model.fit(X_train,Y_train,nb_epoch = 2,batch_size = 100)
print("\nTest")
# 测试
cost,accuracy = model.evaluate(X_test,Y_test)
print("accuracy:",accuracy)
# 保存模型
model.save("./model.hdf5")
# 删除现有模型
del model
print("model had been del")
# 再次载入模型
model = load_model("./model.hdf5")
# 预测
cost,accuracy = model.evaluate(X_test,Y_test)
print("accuracy:",accuracy)

实验结果为:

Epoch 1/2
60000/60000 [==============================] - 6s 104us/step - loss: 0.4217 - acc: 0.8888
Epoch 2/2
60000/60000 [==============================] - 6s 99us/step - loss: 0.2240 - acc: 0.9366
Test
10000/10000 [==============================] - 1s 149us/step
accuracy: 0.9419
model had been del
10000/10000 [==============================] - 1s 117us/step
accuracy: 0.9419

以上就是Python神经网络使用Keras进行模型的保存与读取的详细内容,更多关于Keras模型保存读取的资料请关注编程网其它相关文章!

--结束END--

本文标题: python神经网络使用Keras进行模型的保存与读取

本文链接: https://lsjlt.com/news/117652.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作