返回顶部
首页 > 资讯 > 数据库 >[Elasticsearch] ES聚合场景下部分结果数据未返回问题分析
  • 205
分享到

[Elasticsearch] ES聚合场景下部分结果数据未返回问题分析

摘要

本文主要对ES聚合场景下部分结果数据未返回问题分析,给出排查思路和解决方案 背景 在对ES某个筛选字段聚合查询,类似groupBy操作后,发现该字段新增的数据,聚合结果没有展示出来,但是用户在

[Elasticsearch]  ES聚合场景下部分结果数据未返回问题分析

本文主要对ES聚合场景下部分结果数据未返回问题分析,给出排查思路和解决方案

背景

在对ES某个筛选字段聚合查询,类似groupBy操作后,发现该字段新增的数据,聚合结果没有展示出来,但是用户在全文检索新增的筛选数据后,又可以查询出来, 针对该问题进行了相关排查。

排查思路

首先要明确我们数据的写入流程, 下图:

TsbdjP.png

在检查Mysql库的数据没有问题之后,开始检查ES是否有问题,根据现象我们知道既然在全文检索中都能搜索到,说明数据肯定是写入ES里了,但是又如何确定聚合结果呢?

首先添加日志将代码最终生成DSL语句打印出来

LOGGER.info("
{}", searchRequestBuilder);

这样就很方便地使用curl命令进行调试了

下面是对生成的DSL语句执行查询:

curl -XGET "Http://ip:9200/es_data_index/_search?pretty" -H "Content-Type: application/JSON" -d"
{
    "query":{
        "bool":{
            "must":[
                {
                    "term":{
                        "companyId":{
                            "value":1,
                            "boost":1
                        }
                    }
                },
                {
                    "term":{
                        "yn":{
                            "value":1,
                            "boost":1
                        }
                    }
                },
                {
                    "match_all":{
                        "boost":1
                    }
                }
            ],
            "must_not":[
                {
                    "term":{
                        "table_sentinel":{
                            "value":2,
                            "boost":1
                        }
                    }
                }
            ],
            "disable_coord":false,
            "adjust_pure_negative":true,
            "boost":1
        }
    },
    "aggregations":{
        "group_by_topics":{
            "terms":{
                "field":"topic",
                "size":10,
                "min_doc_count":1,
                "shard_min_doc_count":0,
                "show_term_doc_count_error":false,
                "order":[
                    {
                        "_count":"desc"
                    },
                    {
                        "_term":"asc"
                    }
                ]
            }
        }
    }
}"

上图group_by_topics 就是我们要聚合的字段, 下面是执行该DSL语句的结果:

"aggregations" : {
    "group_by_topics" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 14,
      "buckets" : [
        {
          "key" : 1,
          "doc_count" : 35
        },
        {
          "key" : 19,
          "doc_count" : 25
        },
        {
          "key" : 18,
          "doc_count" : 17
        },
        {
          "key" : 29,
          "doc_count" : 15
        },
        {
          "key" : 20,
          "doc_count" : 12
        },
        {
          "key" : 41,
          "doc_count" : 8
        },
        {
          "key" : 161,
          "doc_count" : 5
        },
        {
          "key" : 2,
          "doc_count" : 3
        },
        {
          "key" : 3,
          "doc_count" : 2
        },
        {
          "key" : 21,
          "doc_count" : 2
        }
      ]
    }
  }

经过观察发现聚合结果确实没有我们新增的筛选项, 同时返回的数据只有10条

"sum_other_doc_count" : 14, 这项是关键项,从字面意思看还有有其他的文档,于是查询具体在ES中的意义是什么?

经过查询发现有段描述:

TyRv6g.png

就是只会返回top结果, 部分结果不响应返回

那如何让这部分结果返回呢?

带着问题, 发现使用桶聚合,默认会根据doc_count 降序排序,同时默认只返回10条聚合结果.

可以通过在聚合查询增大属性size来解决,如下

curl -XGET "http://ip:9200/es_data_index/_search?pretty" -H "Content-Type: application/json" -d"
{
    "query":{
        "bool":{
            "must":[
                {
                    "term":{
                        "companyId":{
                            "value":1,
                            "boost":1
                        }
                    }
                },
                {
                    "term":{
                        "yn":{
                            "value":1,
                            "boost":1
                        }
                    }
                },
                {
                    "match_all":{
                        "boost":1
                    }
                }
            ],
            "must_not":[
                {
                    "term":{
                        "table_sentinel":{
                            "value":2,
                            "boost":1
                        }
                    }
                }
            ],
            "disable_coord":false,
            "adjust_pure_negative":true,
            "boost":1
        }
    },
    "aggregations":{
        "group_by_topics":{
            "terms":{
                "field":"topic",
                "size":100,
                "min_doc_count":1,
                "shard_min_doc_count":0,
                "show_term_doc_count_error":false,
                "order":[
                    {
                        "_count":"desc"
                    },
                    {
                        "_term":"asc"
                    }
                ]
            }
        }
    }
}"

下面是查询结果:

"aggregations" : {
    "group_by_topics" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 0,
      "buckets" : [
        {
          "key" : 1,
          "doc_count" : 35
        },
        {
          "key" : 19,
          "doc_count" : 25
        },
        {
          "key" : 18,
          "doc_count" : 17
        },
        {
          "key" : 29,
          "doc_count" : 15
        },
        {
          "key" : 20,
          "doc_count" : 12
        },
        {
          "key" : 41,
          "doc_count" : 8
        },
        {
          "key" : 161,
          "doc_count" : 5
        },
        {
          "key" : 2,
          "doc_count" : 3
        },
        {
          "key" : 3,
          "doc_count" : 2
        },
        {
          "key" : 21,
          "doc_count" : 2
        },
        {
          "key" : 81,
          "doc_count" : 2
        },
        {
          "key" : 801,
          "doc_count" : 2
        },
        {
          "key" : 0,
          "doc_count" : 1
        },
        {
          "key" : 4,
          "doc_count" : 1
        },
        {
          "key" : 5,
          "doc_count" : 1
        },
        {
          "key" : 6,
          "doc_count" : 1
        },
        {
          "key" : 7,
          "doc_count" : 1
        },
        {
          "key" : 11,
          "doc_count" : 1
        },
        {
          "key" : 23,
          "doc_count" : 1
        },
        {
          "key" : 28,
          "doc_count" : 1
        },
        {
          "key" : 201,
          "doc_count" : 1
        },
        {
          "key" : 241,
          "doc_count" : 1
        }
      ]
    }

把ES所有的筛选项数据都统计返回来.

代码里设置size:

  TermsAggregationBuilder termAgg1 = AggregationBuilders.terms("group_by_topics")
                .field("topic").size(100);

我们解决了问题, 现在思考下ES为什么不一下子返回所有统计项的结果数据呢?

答案是由ES聚合机制决定, ES怎么聚合呢

TyzJv4.png

接受客户端的节点是协调节点

协调节点上,搜索任务会被分解成两个阶段: query和fetch

真正搜索或聚合任务的节点为数据节点,如图 2, 3, 4

聚合步骤:

  • 客户端发请求到协调节点
  • 协调节点将请求推送到各数据节点
  • 各数据节点指定分片参与数据汇集工作
  • 协调节点进行总结果汇聚

es 出于效率和性能原因等,聚合的结果其实是不精确的.什么意思? 以我们上面遇到的场景为例:

默认返回top 10 聚合结果, 首先在各节点分片取自己的topic 10 返回给协调节点,然后协调节点进行汇总. 这样就会导致全量的实际聚合结果跟预期的不一致.

虽然有很多办法提高ES聚合精准度,但是如果对于大数据量的精准聚合,响应速度要快场景,es并不擅长,需要使用类似clickhouse这样的产品来解决这样的场景.

总结

本文主要针对实际工作的应用问题,来排查解决ES聚合数据部分数据未展示问题, 同时对ES的聚合检索原理进行讲解 .在数据量大、聚合精度要求高、响应速度快的业务场景ES并不擅长.

参考

https://discuss.elastic.co/t/what-does-sum-other-doc-count-mean-exactly/159687

https://stackoverflow.com/questions/22927098/show-all-elasticsearch-aggregation-results-buckets-and-not-just-10

本文作者: chaplinthink, 关注领域:大数据、基础架构、系统设计, 一个热爱学习、分享的大数据工程师
您可能感兴趣的文档:

--结束END--

本文标题: [Elasticsearch] ES聚合场景下部分结果数据未返回问题分析

本文链接: https://lsjlt.com/news/9017.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作