返回顶部
首页 > 资讯 > 数据库 >时序数据库InfluxDB的基本语法
  • 223
分享到

时序数据库InfluxDB的基本语法

时序数据库InfluxDB的基本语法 2015-06-18 18:06:10 223人浏览 绘本
摘要

一 了解InfluxDB的必要性 时序数据库主要存放的数据 Time series data is a series of data points each associated with a specific time. Example

时序数据库InfluxDB的基本语法

一 了解InfluxDB的必要性

时序数据库主要存放的数据

Time series data is a series of data points each associated with a specific time. Examples include:

  • Server perfORMance metrics
  • Financial averages over time
  • Sensor data, such as temperature, barometric pressure, wind speeds, etc.

时序数据库和关系数据库的区别

Relational databases can be used to store and analyze time series data, but depending on the precision of your data, a query can involve potentially millions of rows. InfluxDB is purpose-built to store and query data by time, providing out-of-the-box functionality that optionally downsamples data after a specific age and a query engine optimized for time-based data.

二 基本概念

2.1 database & duration

database

A logical container for users, retention policies, continuous queries, and time series data.

duration

The attribute of the retention policy that determines how long InfluxDB stores data. Data older than the duration are automatically dropped from the database. 

2.2 field

The key-value pair in an InfluxDB data structure that records metadata and the actual data value. Fields are required in InfluxDB data structures and they are not indexed - queries on field values scan all points that match the specified time range and, as a result, are not performant relative to tags.

Field keys are strings and they store metadata.Field values are the actual data; they can be strings, floats, integers, or booleans. A field value is always associated with a timestamp.

2.3 Tags

Tags are optional. The key-value pair in the InfluxDB data structure that records metadata.You don’t need to have tags in your data structure, but it’s generally a Good idea to make use of them because, unlike fields, tags are indexed. This means that queries on tags are faster and that tags are ideal for storing commonly-queried metadata.

Tags 与  fields 的区别

Tags are indexed and fields are not indexed. This means that queries on tags are more performant than those on fields.

Tags 与  fields 的使用场景

(1)Store commonly-queried meta data in tags

(2)Store data in tags if you plan to use them with the InfluxQL GROUP BY clause

(3)Store data in fields if you plan to use them with an InfluxQL function

(4)Store numeric values as fields (tag values only support string values)

2.4 measurement 

The measurement acts as a container for tags, fields, and the time column, and the measurement name is the description of the data that are stored in the associated fields. Measurement names are strings, and, for any sql users out there, a measurement is conceptually similar to a table.

2.5 point

In InfluxDB, a point represents a single data record, similar to a row in a SQL database table. Each point:

  • has a measurement, a tag set, a field key, a field value, and a timestamp;
  • is uniquely identified by its series and timestamp.

You cannot store more than one point with the same timestamp in a series. If you write a point to a series with a timestamp that matches an existing point, the field set becomes a uNIOn of the old and new field set, and any ties go to the new field set.

2.6 series

In InfluxDB, a series is a collection of points that share a measurement, tag set, and field key. A point represents a single data record that has four components: a measurement, tag set, field set, and a timestamp. A point is uniquely identified by its series and timestamp.

series key

A series key identifies a particular series by measurement, tag set, and field key.

三 查询

3.1 正则模糊查询

实现查询以给定字段开始的数据

select fieldName from measurementName where fieldName=~/^给定字段/

实现查询以给定字段结束的数据

select fieldName from measurementName where fieldName=~/给定字段$/

实现查询包含给定字段数据

select fieldName from measurementName where fieldName=~/给定字段/

3.2 Select 注意事项:

必须包含field key

A query requires at least one field key in the SELECT clause to return data. If the SELECT clause only includes a single tag key or several tag keys, the query returns an empty response. This behavior is a result of how the system stores data.

3.3 Where 限定

使用单引号,否则无数据返回或报错

(1)Single quote string field values in the WHERE clause. Queries with unquoted string field values or double quoted string field values will not return any data and, in most cases,will not return an error.

(2)Single quote tag values in the WHERE clause. Queries with unquoted tag values or double quoted tag values will not return any data and, in most cases, will not return an error.

3.4 Group By 

(1)Note that the GROUP BY clause must come after the WHERE clause.

(2)The GROUP BY clause groups query results by:  one or more specified tags ;specified time interval。

(3)You cannot use GROUP BY to group fields.

(4)fill() changes the value reported for time intervals that have no data.

By default, a GROUP BY time() interval with no data reports null as its value in the output column. fill() changes the value reported for time intervals that have no data. Note that fill() must go at the end of the GROUP BY clause if you’reGROUP(ing) BY several things (for example, both tags and a time interval).

3.5 ORDER BY time DESC

By default, InfluxDB returns results in ascending time order; the first point returned has the oldest timestamp and the last point returned has the most recent timestamp.ORDER BY time DESC reverses that order such that InfluxDB returns the points with the most recent timestamps first.

注意:ORDER by time DESC must appear after the GROUP BY clause if the query includes a GROUP BY clause. ORDER by time DESC must appear after the WHERE clause if the query includes a WHERE clause and no GROUP BY clause.

四.SHOW CARDINALITY

是用于估计或精确计算measurement、序列、tag key、tag value和field key的基数的一组命令。

SHOW CARDINALITY命令有两种可用的版本:估计和精确。估计值使用草图进行计算,对于所有基数大小来说,这是一个安全默认值。精确值是直接对TSM(Time-Structured Merge Tree)数据进行计数,但是,对于基数大的数据来说,运行成本很高。

下面以tag key、tag value为例。

4.1 SHOW TAG KEY CARDINALITY

估计或精确计算tag key集的基数。

ON <database>、FROM <sources>、WITH KEY = <key>、WHERE <condition>、GROUP BY <dimensions>和LIMIT/OFFSET子句是可选的。当使用这些查询子句时,查询将回退到精确计数(exect count)。当启用Time Series Index(TSI)时,才支持对time进行过滤。不支持在WHERE子句中使用time。

举例:

-- show estimated tag key cardinality
SHOW TAG KEY CARDINALITY

----计算精确值
-- show exact tag key cardinality SHOW TAG KEY EXACT CARDINALITY

4.2 SHOW TAG VALUES CARDINALITY

估计或精确计算指定tag key对应的tag value的基数。

ON <database>、FROM <sources>、WITH KEY = <key>、WHERE <condition>、GROUP BY <dimensions>和LIMIT/OFFSET子句是可选的。当使用这些查询子句时,查询将回退到精确计数(exect count)。当启用Time Series Index(TSI)时,才支持对time进行过滤。

举例

-- show estimated tag key values cardinality for a specified tag key
SHOW TAG VALUES CARDINALITY WITH KEY = "myTagKey"

-- show estimated tag key values cardinality for a specified tag key
SHOW TAG VALUES CARDINALITY WITH KEY = "myTagKey"

-----计算精确值
-- show exact tag key values cardinality for a specified tag key SHOW TAG VALUES EXACT CARDINALITY WITH KEY = "myTagKey" -- show exact tag key values cardinality for a specified tag key SHOW TAG VALUES EXACT CARDINALITY WITH KEY = "myTagKey"

4.3 应用场景举例

例如,前面的分享,我们通过Telegraf 将server的监控数据保存到了InfluxDB中,其中CPU指标是必不可少的(telegraf.conf 设置)。假如有一天,我们需要统计telegraf一共部署了多少台。其实就可以通过SHOW TAG VALUES EXACT CARDINALITY 获得。

SQL 语句如下:

SHOW TAG VALUES EXACT CARDINALITY from "cpu" WITH KEY = "host"

即查看cpu 中 host 的key值有多少个。因为通过telegraf.conf的设置,一台Server 对应一个唯一的host值,host值有多少个,就有多少台Server已部署了telegraf。

5 Drop 与 Delete

5.1 series

The DROP SERIES query deletes all points from a series in a database, and it drops the series from the index.

The query takes the following form, where you must specify either the FROM clause or the WHERE clause.

语法如下:

DROP SERIES FROM <measurement_name[,measurement_name]> WHERE <tag_key>=""

A successful DROP SERIES query returns an empty result.

Drop all points in the series that have a specific tag pair from all measurements in the database(即,如不指定from,将会把符合条件的所有表tag数据删除).

与Delete series  的区别是:

The DELETE query deletes all points from a series in a database. UnlikeDROP SERIESDELETE does not drop the series from the index.

5.2 measurement_name

DELETE FROM <measurement_name> WHERE [=""] | []

只允许根据tag和时间来进行删除操作.

measurement的drop,是比较消耗资源的,并且操作时间相对较长。看有网友的分享,建议 在 drop measurement 之前先删除所有的 tag。

即先执行:

DROP SERIES FROM "measurement_name"

然后再执行:

drop measurement <measurement_name>

六 常用函数部分

 常用函数汇总如下:

类型 函数名 备注说明1 备注说明2
聚合类 COUNT() Returns the number of non-null field values.  
DISTINCT() Returns the list of unique field values. DISTINCT() often returns several results with the same timestamp; InfluxDB assumes points with the same series and timestamp are duplicate points and simply overwrites any duplicate point with the most recent point in the destination measurement.
INTEGRAL() Returns the area under the curve for subsequent field values. InfluxDB calculates the area under the curve for subsequent field values and converts those results into the summed area per unit. The unit argument is an integer followed by a duration literal and it is optional. If the query does not specify the unit, the unit defaults to one second (1s).
MEAN() Returns the arithmetic mean (average) of field values.  
MEDIAN() Returns the middle value from a sorted list of field values. MEDIAN() is nearly equivalent to  PERCENTILE(field_key, 50),  except MEDIAN() returns the average of the two middle field values if the field contains an even number of values.
MODE() Returns the most frequent value in a list of field values.  MODE() returns the field value with the earliest timestamp if there’s a tie between two or more values for the maximum number of occurrences.
SPREAD() Returns the difference between the minimum and maximum field values.  
STDDEV() Returns the standard deviation of field values.  
SUM() Returns the sum of field values.  
查询选择类 BOTTOM() Returns the smallest N field values. BOTTOM() returns the field value with the earliest timestamp if there’s a tie between two or more values for the smallest value.
FIRST() Returns the field value with the oldest timestamp.  
LAST() Returns the field value with the most recent timestamp.  
MAX() Returns the greatest field value.  
MIN() Returns the lowest field value.  
PERCENTILE() Returns the Nth percentile field value.  
SAMPLE() Returns a random sample of N field values. SAMPLE() uses reservoir sampling to generate the random points.
TOP() Returns the greatest N field values. TOP() returns the field value with the earliest timestamp if there’s a tie between two or more values for the greatest value.
转换类 ABS() Returns the absolute value of the field value.  
ACOS() Returns the arccosine (in radians) of the field value. Field values must be between -1 and 1.
ASIN() Returns the arcsine (in radians) of the field value. Field values must be between -1 and 1.
ATAN() Returns the arctangent (in radians) of the field value. Field values must be between -1 and 1.
ATAN2() Returns the the arctangent of y/x in radians.  
CEIL() Returns the subsequent value rounded up to the nearest integer.  
COS() Returns the cosine of the field value.  
CUMULATIVE_SUM() Returns the running total of subsequent field values.  
DERIVATIVE() Returns the rate of change between subsequent field values. InfluxDB calculates the difference between subsequent field values and converts those results into the rate of change per unit. The unit argument is an integer followed by a duration literal and it is optional. If the query does not specify the unit the unit defaults to one second (1s).
DIFFERENCE() Returns the result of subtraction between subsequent field values.  
ELAPSED() Returns the difference between subsequent field value’s timestamps. InfluxDB calculates the difference between subsequent timestamps. The unit option is an integer followed by a duration literal and it determines the unit of the returned difference. If the query does not specify the unit option the query returns the difference between timestamps in nanoseconds.
EXP() Returns the exponential of the field value.  
FLOOR() Returns the subsequent value rounded down to the nearest integer.  
LN() Returns the natural logarithm of the field value.   
LOG() Returns the logarithm of the field value with base b  
LOG2() Returns the logarithm of the field value to the base 2.  
LOG10() Returns the logarithm of the field value to the base 10.  
MOVING_AVERAGE() Returns the rolling average across a window of subsequent field values.  
POW() Returns the field value to the power of x  
ROUND() Returns the subsequent value rounded to the nearest integer.  
SIN() Returns the sine of the field value.  
SQRT() Returns the square root of field value.  
TAN() Returns the tangent of the field value.  
推测类 HOLT_WINTERS() Returns N number of predicted field values  

Predict when data values will cross a given threshold;

Compare predicted values with actual values to detect anomalies in your data.

技术分析类 CHANDE_MOMENTUM_OSCILLATOR()   The Chande Momentum Oscillator (CMO) is a technical momentum indicator developed by Tushar Chande. The CMO indicator is created by calculating the difference between the sum of all recent higher data points and the sum of all recent lower data points, then dividing the result by the sum of all data movement over a given time period. The result is multiplied by 100 to give the -100 to +100 range.
EXPONENTIAL_MOVING_AVERAGE()   An exponential moving average (EMA) is a type of moving average that is similar to a simple moving average, except that more weight is given to the latest data. It’s also known as the “exponentially weighted moving average.” This type of moving average Reacts faster to recent data changes than a simple moving average.
DOUBLE_EXPONENTIAL_MOVING_AVERAGE()   The Double Exponential Moving Average (DEMA) attempts to remove the inherent lag associated to Moving Averages by placing more weight on recent values. The name suggests this is achieved by applying a double exponential smoothing which is not the case. The name double comes from the fact that the value of an EMA is doubled. To keep it in line with the actual data and to remove the lag, the value “EMA of EMA” is subtracted from the previously doubled EMA.
KAUFMANS_EFFICIENCY_RATIO()   Kaufman’s Efficiency Ration, or simply “Efficiency Ratio” (ER), is calculated by dividing the data change over a period by the absolute sum of the data movements that occurred to achieve that change. The resulting ratio ranges between 0 and 1 with higher values representing a more efficient or trending market.

The ER is very similar to the Chande Momentum Oscillator (CMO). The difference is that the CMO takes market direction into account, but if you take the absolute CMO and divide by 100, you you get the Efficiency Ratio.

KAUFMANS_ADAPTIVE_MOVING_AVERAGE()   Kaufman’s Adaptive Moving Average (KAMA) is a moving average designed to account for sample noise or volatility. KAMA will closely follow data points when the data swings are relatively small and noise is low. KAMA will adjust when the data swings widen and follow data from a greater distance. This trend-following indicator can be used to identify the overall trend, time turning points and filter data movements.
TRIPLE_EXPONENTIAL_MOVING_AVERAGE()   The triple exponential moving average (TEMA) was developed to filter out volatility from conventional moving averages. While the name implies that it’s a triple exponential smoothing, it’s actually a composite of a single exponential moving average, a double exponential moving average, and a triple exponential moving average.
TRIPLE_EXPONENTIAL_DERIVATIVE()   The triple exponential derivative indicator, commonly referred to as “TRIX,” is an oscillator used to identify oversold and overbought markets, and can also be used as a momentum indicator. TRIX calculates a triple exponential moving average of the log of the data input over the period of time. The previous value is subtracted from the previous value. This prevents cycles that are shorter than the defined period from being considered by the indicator.

Like many oscillators, TRIX oscillates around a zero line. When used as an oscillator, a positive value indicates an overbought market while a negative value indicates an oversold market. When used as a momentum indicator, a positive value suggests momentum is increasing while a negative value suggests momentum is decreasing. Many analysts believe that when the TRIX crosses above the zero line it gives a buy signal, and when it closes below the zero line, it gives a sell signal.

RELATIVE_STRENGTH_INDEX()   The relative strength index (RSI) is a momentum indicator that compares the magnitude of recent increases and decreases over a specified time period to measure speed and change of data movements.

 

参考网址:

https://blog.csdn.net/xuxiannian/article/details/103559246

Https://blog.csdn.net/funnypython/article/details/89888972

https://docs.influxdata.com/influxdb/v1.8/query_language/explore-data/ https://docs.influxdata.com/influxdb/v1.8/query_language/manage-database/#drop-series-from-the-index-with-drop-series https://docs.influxdata.com/influxdb/v1.8/query_language/functions/   https://help.aliyun.com/document_detail/113127.html?spm=5176.21213303.J_6704733920.12.345d3eda8r81jQ&scm=20140722.S_help%40%40%E6%96%87%E6%A1%A3%40%40113127.S_0%2Bos.ID_113127-RL_show%20tag%20values-OR_helpmain-V_2-P0_1
您可能感兴趣的文档:

--结束END--

本文标题: 时序数据库InfluxDB的基本语法

本文链接: https://lsjlt.com/news/8823.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • 时序数据库InfluxDB的基本语法
    一 了解InfluxDB的必要性 时序数据库主要存放的数据 Time series data is a series of data points each associated with a specific time. Example...
    99+
    2015-06-18
    时序数据库InfluxDB的基本语法
  • 试用时间序列数据库InfluxDB
    Hadoop集群监控需要使用时间序列数据库,今天花了半天时间调研使用了一下最近比较火的InfluxDB,发现还真是不错,记录一下学习心得。Influx是用Go语言写的,专为时间序列数据持久化所开发的,由于使...
    99+
    2024-04-02
  • Springboot使用influxDB时序数据库的实现
    目录引入依赖 配置 构建实体类 保存数据 查询数据 项目中需要存放大量设备日志,且需要对其进行简单的数据分析,信息提取工作. 结合众多考量因素,项目决定使用时序数据库中的领头羊In...
    99+
    2024-04-02
  • 深入浅出:了解时序数据库 InfluxDB
    时序数据库经常应用于机房运维监控、物联网IoT设备采集存储、互联网广告点击分析等基于时间线且多源数据连续涌入数据平台的应用场景,InfluxDB专为时序数据存储而生,尤其是在工业领域的智能制造,未来应用潜力巨大。 数据模型 1.时序数据...
    99+
    2021-08-02
    深入浅出:了解时序数据库 InfluxDB
  • 如何理解时间序列数据库InfluxDB
    如何理解时间序列数据库InfluxDB,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。   性能监控中的很多数据都是根据时间维度来生...
    99+
    2024-04-02
  • InfluxDB,TimescaleDB和QuestDB三种时序数据库的比较
    在过去的十年间,我们亲历了关系型、非关系型、在线分析处理(OLAP)型、以及在线事务处理(OLTP)型数据库的市场之争,也注意到了诸如:Snowflake、MongoDB、Cockroach Labs、以...
    99+
    2015-07-30
    InfluxDB,TimescaleDB和QuestDB三种时序数据库的比较
  • TimescaleDB比拼InfluxDB:如何选择合适的时序数据库?
    时序数据已用于愈来愈多的应用中,包括物联网、DevOps、金融、零售、物流、石油自然气、制造业、汽车、太空、SaaS,乃至机器学习和人工智能。虽然当前时序数据库仅局限于采集度量和监控,可是软件开发人员已经...
    99+
    2014-06-21
    TimescaleDB比拼InfluxDB:如何选择合适的时序数据库?
  • Sqlite数据库的基本语法有哪些
    本篇内容主要讲解“Sqlite数据库的基本语法有哪些”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Sqlite数据库的基本语法有哪些”吧!一、安装既然要学Sql...
    99+
    2024-04-02
  • 数据库基本操作语句
    这篇文章给大家分享的是有关数据库基本操作语句的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。数据库基本操作语句有哪些?数据库基本操作语句有:1 关于数据库的基本操作SHOW&nbs...
    99+
    2024-04-02
  • mysql数据库基本语法及操作大全
    mysql数据库基本语法 DDL操作 创建数据库 语法:create database 数据库名; 查看所有数据库 语法:show databases; 切换(使用)数据库 语法:u...
    99+
    2024-04-02
  • 数据库基本操作语法归纳总结
    关系型数据库:以表作为实体,以主键和外键关系作为联系的一种数据结构。主键:在关系型数据库中,用一个唯一的标识符来标志每一行,这个标识符就是主键。主键有两个特点:非空和不能重复。外键:在关系型数据库中,外键就是用来表达表与表之间的关系、联系,...
    99+
    2023-05-31
    数据库 语法
  • oracle数据库的基本操作及语法是什么
    小编给大家分享一下oracle数据库的基本操作及语法是什么,希望大家阅读完这篇文章后大所收获,下面让我们一起去探讨吧!oracle数据库基本语句一、Oracle数据库操作1、创建数据库create data...
    99+
    2024-04-02
  • MongoDB数据库—基础语法
    一、MongoDB 数据库的特点及安装 MongoDB 数据库的特点 面向文档,模式自由 json数据模式(bson)(可以初略理解为字典) 多级引索 高可用复制集 水平扩展 跨平台、多种语言接口 弱事...
    99+
    2024-04-02
  • 数据库ORACLE基本语句集锦
    --建表FAMILYINFCREATE  TABLE  FAMILYINFO(      FNO NUMB...
    99+
    2024-04-02
  • 数据库基本-SQL语句大全
    一、基础 1、说明:创建数据库Create DATABASE database-name2、说明:删除数据库drop database dbname3、说明:备份sql server--- 创建 ...
    99+
    2024-04-02
  • springboot常用语法库的基本语法
    目录1. freemarker是什么1.1 优点2. springboot整合freemarker2.1 pom.xml2.2 项目配置文件2.3 Controller2.4 ind...
    99+
    2022-12-19
    springboot常用语法库 springboot语法库
  • 基本操作mysql数据库的方法
    下文主要给大家带来基本操作mysql数据库的方法,希望这些内容能够带给大家实际用处,这也是我编辑基本操作mysql数据库的方法这篇文章的主要目的。好了,废话不多说,大家直接看下文吧。数据库的基本操作:Sql...
    99+
    2024-04-02
  • mysql数据库基本命令---多条数据的同时操作
    添加主键 mysql> alter table info add primary key(id); Query OK, 0 rows affected (0.07 sec) Records: 0 ...
    99+
    2024-04-02
  • 数据库的基本备份
    整理下工作中遇到的数据备份方法一:使用阿里云备份数据库阿里云有自动备份功能,在控制中心有个快照功能,就是自动备份恢复用的,阿里云服务器每天都会自动备份系统盘和数据盘,如果服务器被***了,可以借用快照功能,...
    99+
    2024-04-02
  • 数据库的基本操作
    数据库的操作笔记:加油! 跳过授权登录:1,关闭mysql;mysqld --skip-grant-tables 重新启动客户端不用密码就可以登录 远程登录数据库: select&n...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作