这篇文章主要讲解了“postgresql中sort_inner_and_outer函数分析”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Postgresql
这篇文章主要讲解了“postgresql中sort_inner_and_outer函数分析”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Postgresql中sort_inner_and_outer函数分析”吧!
merge join的算法实现伪代码如下:
READ data_set_1 SORT BY JOIN KEY TO temp_ds1
READ data_set_2 SORT BY JOIN KEY TO temp_ds2
READ ds1_row FROM temp_ds1
READ ds2_row FROM temp_ds2
WHILE NOT eof ON temp_ds1,temp_ds2 LOOP
IF ( temp_ds1.key = temp_ds2.key ) OUTPUT JOIN ds1_row,ds2_row
ELSIF ( temp_ds1.key <= temp_ds2.key ) READ ds1_row FROM temp_ds1
ELSIF ( temp_ds1.key => temp_ds2.key ) READ ds2_row FROM temp_ds2
END LOOP
Cost相关
注意:实际使用的参数值通过系统配置文件定义,而不是这里的常量定义!
typedef double Cost;
#define DEFAULT_SEQ_PAGE_COST 1.0 //顺序扫描page的成本
#define DEFAULT_RANDOM_PAGE_COST 4.0 //随机扫描page的成本
#define DEFAULT_CPU_TUPLE_COST 0.01 //处理一个元组的CPU成本
#define DEFAULT_CPU_INDEX_TUPLE_COST 0.005 //处理一个索引元组的CPU成本
#define DEFAULT_CPU_OPERATOR_COST 0.0025 //执行一次操作或函数的CPU成本
#define DEFAULT_PARALLEL_TUPLE_COST 0.1 //并行执行,从一个worker传输一个元组到另一个worker的成本
#define DEFAULT_PARALLEL_SETUP_COST 1000.0 //构建并行执行环境的成本
#define DEFAULT_EFFECTIVE_CACHE_SIZE 524288
double seq_page_cost = DEFAULT_SEQ_PAGE_COST;
double random_page_cost = DEFAULT_RANDOM_PAGE_COST;
double cpu_tuple_cost = DEFAULT_CPU_TUPLE_COST;
double cpu_index_tuple_cost = DEFAULT_CPU_INDEX_TUPLE_COST;
double cpu_operator_cost = DEFAULT_CPU_OPERATOR_COST;
double parallel_tuple_cost = DEFAULT_PARALLEL_TUPLE_COST;
double parallel_setup_cost = DEFAULT_PARALLEL_SETUP_COST;
int effective_cache_size = DEFAULT_EFFECTIVE_CACHE_SIZE;
Cost disable_cost = 1.0e10;//1后面10个0,通过设置一个巨大的成本,让优化器自动放弃此路径
int max_parallel_workers_per_gather = 2;//每次gather使用的worker数
sort_inner_and_outer函数尝试构造merge join访问路径.
构造过程中的成本估算实现函数initial_cost_mergejoin和final_cost_mergejoin在下一节介绍.
//------------------------------------------------ sort_inner_and_outer
static void
sort_inner_and_outer(PlannerInfo *root,
RelOptInfo *joinrel,
RelOptInfo *outerrel,
RelOptInfo *innerrel,
JoinType jointype,
JoinPathExtraData *extra)
{
JoinType save_jointype = jointype;
Path *outer_path;
Path *inner_path;
Path *cheapest_partial_outer = NULL;
Path *cheapest_safe_inner = NULL;
List *all_pathkeys;
ListCell *l;
outer_path = outerrel->cheapest_total_path;
inner_path = innerrel->cheapest_total_path;
if (PATH_PARAM_BY_REL(outer_path, innerrel) ||
PATH_PARAM_BY_REL(inner_path, outerrel))
return;
if (jointype == JOIN_UNIQUE_OUTER)
{
outer_path = (Path *) create_unique_path(root, outerrel,
outer_path, extra->sjinfo);
Assert(outer_path);
jointype = JOIN_INNER;
}
else if (jointype == JOIN_UNIQUE_INNER)
{
inner_path = (Path *) create_unique_path(root, innerrel,
inner_path, extra->sjinfo);
Assert(inner_path);
jointype = JOIN_INNER;
}
if (joinrel->consider_parallel &&
save_jointype != JOIN_UNIQUE_OUTER &&
save_jointype != JOIN_FULL &&
save_jointype != JOIN_RIGHT &&
outerrel->partial_pathlist != NIL &&
bms_is_empty(joinrel->lateral_relids))
{
cheapest_partial_outer = (Path *) linitial(outerrel->partial_pathlist);
if (inner_path->parallel_safe)
cheapest_safe_inner = inner_path;
else if (save_jointype != JOIN_UNIQUE_INNER)
cheapest_safe_inner =
get_cheapest_parallel_safe_total_inner(innerrel->pathlist);
}
all_pathkeys = select_outer_pathkeys_for_merge(root,
extra->mergeclause_list,
joinrel);
foreach(l, all_pathkeys)//遍历所有可用的排序键
{
List *front_pathkey = (List *) lfirst(l);
List *cur_mergeclauses;
List *outerkeys;
List *innerkeys;
List *merge_pathkeys;
if (l != list_head(all_pathkeys))
outerkeys = lcons(front_pathkey,
list_delete_ptr(list_copy(all_pathkeys),
front_pathkey));
else
outerkeys = all_pathkeys;
cur_mergeclauses =
find_mergeclauses_for_outer_pathkeys(root,
outerkeys,
extra->mergeclause_list);
Assert(list_length(cur_mergeclauses) == list_length(extra->mergeclause_list));
innerkeys = make_inner_pathkeys_for_merge(root,
cur_mergeclauses,
outerkeys);
merge_pathkeys = build_join_pathkeys(root, joinrel, jointype,
outerkeys);
try_mergejoin_path(root,
joinrel,
outer_path,
inner_path,
merge_pathkeys,
cur_mergeclauses,
outerkeys,
innerkeys,
jointype,
extra,
false);
if (cheapest_partial_outer && cheapest_safe_inner)
try_partial_mergejoin_path(root,
joinrel,
cheapest_partial_outer,
cheapest_safe_inner,
merge_pathkeys,
cur_mergeclauses,
outerkeys,
innerkeys,
jointype,
extra);
}
}
//----------------------------------- try_mergejoin_path
static void
try_mergejoin_path(PlannerInfo *root,
RelOptInfo *joinrel,
Path *outer_path,
Path *inner_path,
List *pathkeys,
List *mergeclauses,
List *outersorTKEys,
List *innersortkeys,
JoinType jointype,
JoinPathExtraData *extra,
bool is_partial)
{
Relids required_outer;
JoinCostWorkspace workspace;
if (is_partial)
{
try_partial_mergejoin_path(root,
joinrel,
outer_path,
inner_path,
pathkeys,
mergeclauses,
outersortkeys,
innersortkeys,
jointype,
extra);//并行执行
return;
}
required_outer = calc_non_nestloop_required_outer(outer_path,
inner_path);
if (required_outer &&
!bms_overlap(required_outer, extra->param_source_rels))
{
bms_free(required_outer);
return;
}
if (outersortkeys &&
pathkeys_contained_in(outersortkeys, outer_path->pathkeys))
outersortkeys = NIL;
if (innersortkeys &&
pathkeys_contained_in(innersortkeys, inner_path->pathkeys))
innersortkeys = NIL;
initial_cost_mergejoin(root, &workspace, jointype, mergeclauses,
outer_path, inner_path,
outersortkeys, innersortkeys,
extra);//初始化mergejoin
if (add_path_precheck(joinrel,
workspace.startup_cost, workspace.total_cost,
pathkeys, required_outer))//执行前置检查
{
add_path(joinrel, (Path *)
create_mergejoin_path(root,
joinrel,
jointype,
&workspace,
extra,
outer_path,
inner_path,
extra->restrictlist,
pathkeys,
required_outer,
mergeclauses,
outersortkeys,
innersortkeys));//创建并添加路径
}
else
{
bms_free(required_outer);
}
}
//----------------------- create_mergejoin_path
MergePath *
create_mergejoin_path(PlannerInfo *root,
RelOptInfo *joinrel,
JoinType jointype,
JoinCostWorkspace *workspace,
JoinPathExtraData *extra,
Path *outer_path,
Path *inner_path,
List *restrict_clauses,
List *pathkeys,
Relids required_outer,
List *mergeclauses,
List *outersortkeys,
List *innersortkeys)
{
MergePath *pathnode = makeNode(MergePath);
pathnode->jpath.path.pathtype = T_MergeJoin;
pathnode->jpath.path.parent = joinrel;
pathnode->jpath.path.pathtarget = joinrel->reltarget;
pathnode->jpath.path.param_info =
get_joinrel_parampathinfo(root,
joinrel,
outer_path,
inner_path,
extra->sjinfo,
required_outer,
&restrict_clauses);
pathnode->jpath.path.parallel_aware = false;
pathnode->jpath.path.parallel_safe = joinrel->consider_parallel &&
outer_path->parallel_safe && inner_path->parallel_safe;
pathnode->jpath.path.parallel_workers = outer_path->parallel_workers;
pathnode->jpath.path.pathkeys = pathkeys;
pathnode->jpath.jointype = jointype;
pathnode->jpath.inner_unique = extra->inner_unique;
pathnode->jpath.outerjoinpath = outer_path;
pathnode->jpath.innerjoinpath = inner_path;
pathnode->jpath.joinrestrictinfo = restrict_clauses;
pathnode->path_mergeclauses = mergeclauses;
pathnode->outersortkeys = outersortkeys;
pathnode->innersortkeys = innersortkeys;
final_cost_mergejoin(root, pathnode, workspace, extra);//估算成本
return pathnode;
}
测试脚本如下
select a.*,b.grbh,b.je
from t_dwxx a,
lateral (select t1.dwbh,t1.grbh,t2.je
from t_grxx t1
inner join t_jfxx t2 on t1.dwbh = a.dwbh and t1.grbh = t2.grbh) b
order by b.dwbh;
启动gdb,设置断点
(gdb) b sort_inner_and_outer
Breakpoint 1 at 0x7af63a: file joinpath.c, line 888.
(gdb) c
Continuing.
Breakpoint 1, sort_inner_and_outer (root=0x1a4a278, joinrel=0x1aa7180, outerrel=0x1a55700, innerrel=0x1a56c30,
jointype=JOIN_INNER, extra=0x7ffca933f880) at joinpath.c:888
888 JoinType save_jointype = jointype;
(gdb)
新生成的joinrel是1号和3号RTE的连接,类型为JOIN_INNER
(gdb) p *joinrel->relids->Words
$1 = 10
(gdb) p jointype
$2 = JOIN_INNER
获取排序键,PathKey中的等价类EC,成员为t_grxx.dwbh和t_dwxx.dwbh
...
(gdb)
993 all_pathkeys = select_outer_pathkeys_for_merge(root,
(gdb) n
997 foreach(l, all_pathkeys)
(gdb) p *all_pathkeys
$3 = {type = T_List, length = 1, head = 0x1a69490, tail = 0x1a69490}
(gdb) p *(PathKey *)all_pathkeys->head->data.ptr_value
$5 = {type = T_PathKey, pk_eclass = 0x1a60e08, pk_opfamily = 1994, pk_strategy = 1, pk_nulls_first = false}
...
(gdb) set $rt=(RelabelType *)((EquivalenceMember *)$ec->ec_members->head->data.ptr_value)->em_expr
(gdb) p *$rt->arg
$14 = {type = T_Var}
(gdb) p *(Var *)$rt->arg
$15 = {xpr = {type = T_Var}, varno = 3, varattno = 1, vartype = 1043, vartypmod = 14, varcollid = 100, varlevelsup = 0,
varnoold = 3, varoattno = 1, location = 208}
(gdb) set $rt2=(RelabelType *)((EquivalenceMember *)$ec->ec_members->head->next->data.ptr_value)->em_expr
(gdb) p *(Var *)$rt2->arg
$16 = {xpr = {type = T_Var}, varno = 1, varattno = 2, vartype = 1043, vartypmod = 24, varcollid = 100, varlevelsup = 0,
varnoold = 1, varoattno = 2, location = 218}
开始遍历all_pathkeys
(gdb) n
999 List *front_pathkey = (List *) lfirst(l);
获取连接条件子句,t_dwxx.dwbh=t_grxx.dwbh
(gdb) p *cur_mergeclauses
$17 = {type = T_List, length = 1, head = 0x1a694f0, tail = 0x1a694f0}
构建outer和inner relation的排序键
(gdb) p *(PathKey *)innerkeys->head->data.ptr_value
$22 = {type = T_PathKey, pk_eclass = 0x1a60e08, pk_opfamily = 1994, pk_strategy = 1, pk_nulls_first = false}
(gdb) p *(PathKey *)merge_pathkeys->head->data.ptr_value
$25 = {type = T_PathKey, pk_eclass = 0x1a60e08, pk_opfamily = 1994, pk_strategy = 1, pk_nulls_first = false}
尝试merge join,进入函数try_mergejoin_path
(gdb)
1038 try_mergejoin_path(root,
(gdb) step
try_mergejoin_path (root=0x1a4dcc0, joinrel=0x1a68e20, outer_path=0x1a62288, inner_path=0x1a62320, pathkeys=0x1a694b8,
mergeclauses=0x1a69518, outersortkeys=0x1a694b8, innersortkeys=0x1a69578, jointype=JOIN_INNER, extra=0x7ffca933f880,
is_partial=false) at joinpath.c:572
572 if (is_partial)
初始merge join成本
...
(gdb)
615 initial_cost_mergejoin(root, &workspace, jointype, mergeclauses,
(gdb) p workspace
$26 = {startup_cost = 10861.483356195882, total_cost = 11134.203356195881, run_cost = 24.997499999999999,
inner_run_cost = 247.72250000000003, inner_rescan_run_cost = 1.3627136827435593e-316, outer_rows = 9999,
inner_rows = 100000, outer_skip_rows = 0, inner_skip_rows = 911, numbuckets = 27665584, numbatches = 0,
inner_rows_total = 1.3681950446447804e-316}
构造merge join
...
(gdb) n
625 create_mergejoin_path(root,
(gdb)
624 add_path(joinrel, (Path *)
(gdb)
644 }
(gdb) p *joinrel->pathlist
$28 = {type = T_List, length = 1, head = 0x1a6a180, tail = 0x1a6a180}
(gdb) p *(Node *)joinrel->pathlist->head->data.ptr_value
$29 = {type = T_MergePath}
(gdb) p *(MergePath *)joinrel->pathlist->head->data.ptr_value
$30 = {jpath = {path = {type = T_MergePath, pathtype = T_MergeJoin, parent = 0x1a68e20, pathtarget = 0x1a69058,
param_info = 0x0, parallel_aware = false, parallel_safe = true, parallel_workers = 0, rows = 100000,
startup_cost = 10863.760856195882, total_cost = 12409.200856195883, pathkeys = 0x1a694b8}, jointype = JOIN_INNER,
inner_unique = false, outerjoinpath = 0x1a62288, innerjoinpath = 0x1a62320, joinrestrictinfo = 0x1a692f8},
path_mergeclauses = 0x1a69518, outersortkeys = 0x1a694b8, innersortkeys = 0x1a69578, skip_mark_restore = false,
materialize_inner = false}
完成调用
(gdb) n
sort_inner_and_outer (root=0x1a4dcc0, joinrel=0x1a68e20, outerrel=0x1a4d700, innerrel=0x1a4d918, jointype=JOIN_INNER,
extra=0x7ffca933f880) at joinpath.c:1054
1054 if (cheapest_partial_outer && cheapest_safe_inner)
(gdb)
997 foreach(l, all_pathkeys)
(gdb)
1066 }
(gdb) n
add_paths_to_joinrel (root=0x1a4dcc0, joinrel=0x1a68e20, outerrel=0x1a4d700, innerrel=0x1a4d918, jointype=JOIN_INNER,
sjinfo=0x7ffca933f970, restrictlist=0x1a692f8) at joinpath.c:279
279 if (mergejoin_allowed)
(gdb)
280 match_unsorted_outer(root, joinrel, outerrel, innerrel,
...
感谢各位的阅读,以上就是“PostgreSQL中sort_inner_and_outer函数分析”的内容了,经过本文的学习后,相信大家对PostgreSQL中sort_inner_and_outer函数分析这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是编程网,小编将为大家推送更多相关知识点的文章,欢迎关注!
--结束END--
本文标题: PostgreSQL中sort_inner_and_outer函数分析
本文链接: https://lsjlt.com/news/64806.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-10-23
2024-10-22
2024-10-22
2024-10-22
2024-10-22
2024-10-22
2024-10-22
2024-10-22
2024-10-22
2024-10-22
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0