返回顶部
首页 > 资讯 > 数据库 >Mycat分库分表的简单实践
  • 914
分享到

Mycat分库分表的简单实践

2024-04-02 19:04:59 914人浏览 泡泡鱼
摘要

   Mysql的使用场景中,读写分离只是方案中的一部分,想要扩展,势必会用到分库分表,可喜的是Mycat里已经做到了,今天花时间测试了一下,感觉还不错。 关于分库分

   Mysql的使用场景中,读写分离只是方案中的一部分,想要扩展,势必会用到分库分表,可喜的是Mycat里已经做到了,今天花时间测试了一下,感觉还不错。


关于分库分表

    当然自己也理了一下,分库分表的这些内容,如果分成几个策略或者阶段,大概有下面的几种。Mycat分库分表的简单实践

最上面的第一种是直接拆表,比如数据库db1下面有test1,test2,test3三个表,通过中间件看到的还是表test,里面的数据做了这样的拆分,能够咋一定程度上分解压力,如果细细品来,和分区表的套路有些像。

  接下来的几类也是不断完善,把表test拆解到多个库中,多个服务器中,如果做了读写分离,全套的方案这样的拆解改进还是很大的。如此来看,数据库中间件做了很多应用和数据库之间的很多事情,能够流行起来除了技术原因还是有很多其他的因素。 

分库分表的测试环境模拟

  如果要在一台服务器上测试分库分表,而且要求架构方案要全面,作为技术可行性的一个判定参考,是否可以实现呢。

   如果模拟一主两从的架构,模拟服务分布在3台服务器上,这样的方案需要创建9个实例,每个实例上有3个db需要分别拆分。

   大体的配置如下:

  master1:   端口33091  

(m1)slave1: 端口33092

(m1)slave2: 端口33093

   master2:  端口33071

(m2)slave1: 端口33072

(m2)slave2: 端口33073

master3:  端口33061

(m3)slave1: 端口33062

(m3)slave2: 端口33063

画个图来说明一下,其中db1,db2,db3下面有若个表,需要做sharding

Mycat分库分表的简单实践

所以我们需要模拟的就是这个事情。

使用Mycat碰到的几个小问题解惑

使用Mycat的时候碰到了几个小问题,感觉比较有代表性,记录了一下。

问题1:

手下是使用Mycat连接到数据库之后,如果不切换到具体的数据库下,使用[数据库名].[表名]的方式会抛出下面的错误,可见整个过程中,Mycat拦截了sql信息做了过滤,在转换的时候找不到目标路由。当然实际使用中,规范使用肯定不会有这个问题。

mysql> select * from db1.shard_auto;
ERROR 1064 (HY000):  find no Route:select * from db1.shard_auto
问题2:
在配置了sharding策略之后,insert语句抛出了下面的错误,这个是对语法的一个基本的要求。
mysql> insert into shard_mod_long values(1,'aa',date);
ERROR 1064 (HY000): partition table, insert must provide ColumnList
问题3:

如果sharding策略配置有误,很可能出现表访问正常,但是DML会有问题,提示数据冲突了。至于如何配置sharding,下面会讲。
mysql> select *from shard_mod_long;
Empty set (0.00 sec)

mysql> insert into shard_mod_long(ID,name,shard_date) values(1,'aa',current_date);
ERROR 1105 (HY000): Duplicate entry '1' for key 'PRIMARY'
问题4:
如果sharding的配置有误,很可能出现多份冗余数据。

查看执行计划就一目了然,通过data_node可以看到数据指向了多个目标库。

mysql> explain insert into shard_auto(ID,name,shard_date) values(1,'aa',current_date);
+-----------+------------------------------------------------+
| DATA_NODE | SQL                                                                    |
+-----------+------------------------------------------------+
| pxcNode11 | insert into shard_auto(ID,name,shard_date) values(1,'aa',current_date) |
| pxcNode21 | insert into shard_auto(ID,name,shard_date) values(1,'aa',current_date) |
| pxcNode31 | insert into shard_auto(ID,name,shard_date) values(1,'aa',current_date) |
+-----------+------------------------------------------------+

这种情况如果有一定的需求还是蛮不错的,做sharding可惜了。问题就在于下面的这个table配置。

<table name="shard_auto" primaryKey="ID" type="global"   dataNode="pxcNode11,pxcNode21,pxcNode31" rule="auto-sharding-long" />

需要去掉 type="global"的属性,让它sharding。


Mycat里面的sharding策略

 Mycat的分片策略很丰富,这个是超出自己的预期的,也是Mycat的一大亮点。

大体分片规则如下,另外还有一些其他分片方式这里不全部列举:
(1)分片枚举:sharding-by-intfile
(2)主键范围:auto-sharding-long
(3)一致性hash:sharding-by-murmur
(4)字符串hash解析:sharding-by-stringhash
(5)按日期(天)分片:sharding-by-date
(6)按单月小时拆分:sharding-by-hour
(7)自然月分片:sharding-by-month

在开始之前,我们要创建下面的表来模拟几个sharding的场景,表名根据需求可以改变。
create table shard_test(ID int primary key, name varchar(20),shard_date date); 

主键范围分片

主键范围分片是参考了主键值,按照主键值的分布来分布数据库在不同的库中,我们现在对应的sharding节点上创建同样的表结构。

关于sharding的策略,需要修改rule.xml文件。

常 用的sharding策略已经在Mycat里面实现了,如果要自行实现也可以定制。比如下面的规则,是基于主键字段ID来做sharding,分布的算法 是rang-long,引用了function rang-long,这个function是在对应的一个Java类中实现的。

        <tableRule name="auto-sharding-long">
                <rule>
                        <columns>ID</columns>
                        <alGorithm>rang-long</algorithm>
                </rule>

        <function name="rang-long"
                class="io.mycat.route.function.AutoPartitionByLong">
                <property name="mapFile">autopartition-long.txt</property>
当 然主键的范围是不固定的,可以根据需求来定制,比如按照一百万为单位,或者1000位单位,文件是 autopartition-long.txt  文件的内容默认如下,模板里是分为了3个分片,如果要定制更多的就需要继续配置了,目前来看这个配置只能够承载15亿的数据量,可以根据需求继续扩展定 制。           
# range start-end ,data node index
# K=1000,M=10000.
0-500M=0
500M-1000M=1
1000M-1500M=2

插入一些数据来验证一下,我们可以查看执行计划来做基本的验证,配置无误,数据就根据规则流向了指定的数据库下的表里。

mysql> explain insert into shard_auto(ID,name,shard_date) values(1,'aa',current_date);
+-----------+------------------------------------------------+
| DATA_NODE | SQL                                                                    |
+-----------+------------------------------------------------+
| pxcNode11 | insert into shard_auto(ID,name,shard_date) values(1,'aa',current_date) |
+-----------+------------------------------------------------+

还有一个查看sharding效果的小方法,比如我插入一个极大的值,保证和其他数据不在一个分片上,我们运行查询语句两次,结果会有点变化。

sharing的效果
mysql> select *from shard_auto;
+---------+------+------------+
| ID      | name | shard_date |
+---------+------+------------+
|       1 | aa   | 2017-09-06 |
|       2 | bb   | 2017-09-06 |
| 5000001 | aa   | 2017-09-06 |
+---------+------+------------+
3 rows in set (0.00 sec)
稍作停顿,继续运行。
mysql> select *from shard_auto;
+---------+------+------------+
| ID      | name | shard_date |
+---------+------+------------+
| 5000001 | aa   | 2017-09-06 |
|       1 | aa   | 2017-09-06 |
|       2 | bb   | 2017-09-06 |
+---------+------+------------+
3 rows in set (0.01 sec)


Hash分片

   Hash分片其实企业级应用尤其广泛,我觉得很的一个原因是通过这种数据路由的方式,得到的数据情况是基本可控的,和业务的关联起来比较直接。很多拆分方法都是根据mod方法来平均分布数据。

  sharding的策略在rule.xml里面配置,还是默认的mod-long规则,引用了算法mod-long,这里是根据sharding的节点数来做的,默认是3个。

   <tableRule name="mod-long">
                <rule>
                        <columns>id</columns>
                        <algorithm>mod-long</algorithm>
                </rule>
        </tableRule>
       
        <function name="mod-long" class="io.mycat.route.function.PartitionByMod">
                <!-- how many data nodes -->
                <property name="count">3</property>
        </function>
比如查看两次insert的结果情况。

mysql> explain insert into shard_mod_long(ID,name,shard_date) values(4,'dd',current_date);
+-----------+------------------------------------------------+
| DATA_NODE | SQL                                                                        |
+-----------+------------------------------------------------+
| pxcNode22 | insert into shard_mod_long(ID,name,shard_date) values(4,'dd',current_date) |
+-----------+------------------------------------------------+

mysql> explain insert into shard_mod_long(ID,name,shard_date) values(5,'ee',current_date);
+-----------+------------------------------------------------+
| DATA_NODE | SQL                                                                        |
+-----------+------------------------------------------------+
| pxcNode23 | insert into shard_mod_long(ID,name,shard_date) values(5,'ee',current_date) |
+-----------+------------------------------------------------+
可以看到数据还是遵循了节点的规律,平均分布。

  至于schema.xml的配置,是整个分库的核心,我索性也给出一个配置来,供参考。

<?xml version="1.0"?>
    <!DOCTYPE mycat:schema SYSTEM "schema.dtd">
    <mycat:schema xmlns:mycat="Http://io.mycat/">

        <!-- 定义MyCat的逻辑库 -->
        <schema name="db1" checkSQLschema="false" sqlMaxLimit="100" >
        <table name="shard_mod_long" primaryKey="ID" type="global" dataNode="pxcNode11,pxcNode21,pxcNode31" rule="mod-long" />
        <table name="shard_auto" primaryKey="ID" type="global" dataNode="pxcNode11,pxcNode21,pxcNode31" rule="auto-sharding-long" />
        </schema>


        <!-- 定义MyCat的数据节点 -->
        <dataNode name="pxcNode11" dataHost="dtHost" database="db1" />
        <dataNode name="pxcNode21" dataHost="dtHost2" database="db1" />
        <dataNode name="pxcNode31" dataHost="dtHost3" database="db1" />

        <!-- 定义数据主机dtHost,连接到MySQL读写分离集群 ,schema中的每一个dataHost中的host属性值必须唯一-->
        <!-- dataHost实际上配置就是后台的数据库集群,一个datahost代表一个数据库集群 -->
        <!-- balance="1",全部的readHost与stand by writeHost参与select语句的负载均衡-->
        <!-- writeType="0",所有写操作发送到配置的第一个writeHost,这里就是我们的hostmaster,第一个挂了切到还生存的第二个writeHost-->
        <dataHost name="dtHost" maxCon="500" minCon="20" balance="1"
            writeType="0" dbType="mysql" dbDriver="native" switchType="1" slaveThreshold="100">
            <!--心跳检测 -->
            <heartbeat>show slave status</heartbeat>
            <!--配置后台数据库的IP地址和端口号,还有账号密码 -->
            <writeHost host="hostMaster" url="192.168.163.128:33091" user="mycat_user" passWord="mycat" />
        </dataHost>
         <dataHost name="dtHost2" maxCon="500" minCon="20" balance="1"
            writeType="0" dbType="mysql" dbDriver="native" switchType="1" slaveThreshold="100">
            <!--心跳检测 -->
            <heartbeat>show slave status</heartbeat>
            <!--配置后台数据库的IP地址和端口号,还有账号密码 -->
            <writeHost host="hostMaster" url="192.168.163.128:33071" user="mycat_user" password="mycat" />
        </dataHost>
        <dataHost name="dtHost3" maxCon="500" minCon="20" balance="1"
            writeType="0" dbType="mysql" dbDriver="native" switchType="1" slaveThreshold="100">
            <!--心跳检测 -->
            <heartbeat>show slave status</heartbeat>
            <!--配置后台数据库的IP地址和端口号,还有账号密码 -->
            <writeHost host="hostMaster" url="192.168.163.128:33061" user="mycat_user" password="mycat" />
        </dataHost>
</mycat:schema

 


您可能感兴趣的文档:

--结束END--

本文标题: Mycat分库分表的简单实践

本文链接: https://lsjlt.com/news/48302.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • Mycat分库分表的简单实践
       MySQL的使用场景中,读写分离只是方案中的一部分,想要扩展,势必会用到分库分表,可喜的是Mycat里已经做到了,今天花时间测试了一下,感觉还不错。 关于分库分...
    99+
    2024-04-02
  • Mycat简单实现读写分离与分库分表
    Mycat数据库读写分离 环境: 客户端1.13 ↓ mycat中间件1.11 ↙ ...
    99+
    2024-04-02
  • MyCat分库分表--实战09--按单月小时
    项目环境:   192.168.8.30  mycat 192.168.8.31  node1 192.168.8.32  node2 192...
    99+
    2024-04-02
  • Mycat中怎么实现MySQL单库分表
    Mycat中怎么实现MySQL单库分表,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。一、Mycat安装部署安装环境Linux   目前只有1.6.5版本支持单库...
    99+
    2023-06-19
  • MyCat分库分表实例教程
    这篇文章主要介绍“MyCat分库分表实例教程”,在日常操作中,相信很多人在MyCat分库分表实例教程问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”MyCat分库分表实例教程”的疑惑有所帮助!接下来,请跟着小编...
    99+
    2023-06-01
  • MyCat怎么实现分库分表
    本篇内容介绍了“MyCat怎么实现分库分表”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!项目环境: 192.168.8.30 &n...
    99+
    2023-06-01
  • MyCat分库分表--实战01--垂直分库
    项目环境: 192.168.8.30  mycat 192.168.8.31  node1 192.168.8.32  node2 192.16...
    99+
    2024-04-02
  • MyCat分库分表--实战03--全局表
    项目环境:  192.168.8.30  mycat 192.168.8.31  node1 192.168.8.32  node2 1...
    99+
    2024-04-02
  • Mycat分表分库原则
    分表分库虽然能解决大表对数据库系统的压力,但它并不是万能的,也有一些不利之处,因此首要问题是,分不分库,分哪些库,什么规则分,分多少分片。  原则一:能不分就不分,1000万以内的表,不建议分片,...
    99+
    2024-04-02
  • MyCat怎么分库分表
    本篇内容介绍了“MyCat怎么分库分表”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!项目环境: ...
    99+
    2024-04-02
  • MyCat教程五:实现分库分表
      本文我们来介绍下MyCat的分库分表操作   分库分表   一、分片规则介绍   在rule.xml中定义了各种myCat支持的分片规则。 取模mod-long 自然月分片 sharding-by-month ...
    99+
    2015-12-28
    MyCat教程五:实现分库分表
  • MyCat分库分表的示例分析
    这篇文章主要为大家展示了“MyCat分库分表的示例分析”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“MyCat分库分表的示例分析”这篇文章吧。一、当前分片信息配...
    99+
    2024-04-02
  • MyCat分库分表--实战02--分片枚举
    项目环境:  192.168.8.30  mycat 192.168.8.31  node1 192.168.8.32  node2 1...
    99+
    2024-04-02
  • MyCat分库分表中怎么实现ER分片
    这篇文章主要介绍“MyCat分库分表中怎么实现ER分片”,在日常操作中,相信很多人在MyCat分库分表中怎么实现ER分片问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”MyCat分库分表中怎么实现ER分片”的疑...
    99+
    2023-06-01
  • MyCat分库分表--实战07--按日期天
    项目环境:   192.168.8.30  mycat 192.168.8.31  node1 192.168.8.32  node2 192....
    99+
    2024-04-02
  • MySQL 分库分表的项目实践
    目录一、为什么要分库分表二、库表太大产生的问题三、垂直拆分1. 垂直分库2. 垂直分表四、水平分库分表一、为什么要分库分表 数据库架构演变 刚开始多数项目用单机数据库就够了,随着服务...
    99+
    2024-04-02
  • MyCat实现读写分离、分库、全局表的代码
    环境如下:系统IP主机名服务Centos 7.5192.168.20.2mysql01MySQL 5.7.24Centos 7.5192.168.20.3mysql02MySQL  5.7.24C...
    99+
    2024-04-02
  • 借助MyCat如何实现MySQL分库分表的方法
    这篇文章给大家分享的是有关借助MyCat如何实现MySQL分库分表的方法的内容。小编觉得挺实用的,因此分享给大家做个参考。一起跟随小编过来看看吧。❝借助MyCat来实现MySQL的分库分表落地,没有实现过的...
    99+
    2024-04-02
  • Mycat读写分离配置实践
       工作这些年来,也去了一些地方,有了一些见闻,隐隐感觉很多文化和猫有着千丝万缕的联系。就拿IT行业来说吧,猫有着很高的曝光率,比如大名鼎鼎的 tomcat,是由SUN的软件构架...
    99+
    2024-04-02
  • springboot整合shardingjdbc实现分库分表最简单demo
    目录一、概览1.1 简介1.2 对比1.3 分库分表场景1.4 非分片表处理方法1.5 技术栈二、 项目整合2.1 pom.xml2.2 jpa/mybatis项目其他调整 spri...
    99+
    2024-04-02
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作