1. Permutations P: execute row exchanges becomes PA = LU for any invertible A Permutations P = identity matrix with reor
execute row exchanges
becomes PA = LU for any invertible A
Permutations P = identity matrix with reordered rows
m=n (n-1) ... (3) (2) (1) counts recordings, counts all nxn permuations
对于nxn矩阵存在着n!个置换矩阵
,
对称矩阵
why? take transpose
向量空间对线性运算封闭,即空间内向量进行线性运算得到的向量仍在空间之内
example: = all 2-dim real vectors=x-y plane
first component, second component
= all vectors with 3 components
= all column vectors with m real components
所有向量空间必然包含零向量,因为任何向量数乘0或者加上反向量都会得到零向量,而因为向量空间对线性运算封闭,所以零向量必属于向量空间
中的第一象限则不是一个向量空间, 加法数乘不封闭
a vector space inside , subspace of
line in through zero vector
中不穿过原点的直线就不是向量空间。子空间必须包含零向量,原因就是数乘0的到的零向量必须处于子空间中
all of
any line through L(line)
zero vector only z(zero)
all of
any plane through P(plane)
any line through L(line)
zero vector only z(zero) =
Columns in : all their combinations from a subspace called column space C(A)
空间内包含两向量的所有线性组合
--结束END--
本文标题: 05 MIT线性代数-转置,置换,向量空间Transposes, permutations, spaces
本文链接: https://lsjlt.com/news/450642.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-10-23
2024-10-22
2024-10-22
2024-10-22
2024-10-22
2024-10-22
2024-10-22
2024-10-22
2024-10-22
2024-10-22
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0