返回顶部
首页 > 资讯 > 后端开发 > Python >深入理解MFCC(梅尔频率倒谱系数)
  • 242
分享到

深入理解MFCC(梅尔频率倒谱系数)

音频python算法傅里叶分析语音识别 2023-10-20 13:10:03 242人浏览 独家记忆

Python 官方文档:入门教程 => 点击学习

摘要

从倒谱图出发 MFCC是Mel Frequency Cepstral Coefficient的简称,要理解MFCC特征,就需要先明白这里引入的一个新的概念——Cepstral,这个形容词的名词形式为C

从倒谱图出发

  • MFCC是Mel Frequency Cepstral Coefficient的简称,要理解MFCC特征,就需要先明白这里引入的一个新的概念——Cepstral,这个形容词的名词形式为Cepstrum,即倒谱图(频谱图Spectrum前四个字母倒着拼)
  • 倒谱图是用来“提取”语音的音色(timbre)的,音色是区分说话人最有力的特征,尤其是在前深度学习时代。先直接给出求倒谱图的公式:
    C [ x ( n ) ] = F − 1 [ l o g ( ∣ F [ x ( n ) ] ∣ 2 ) ] C[x(n)] = F^{-1}[ log(|F[x(n)]|^2) ] C[x(n)]=F1[log(F[x(n)]2)]
  • 其中 x(n) x(n) x(n)是离散化的原始信号, F[⋅] F[\cdot] F[]是离散傅里叶变换, log(∣⋅ ∣ 2 ) log(|\cdot|^2) log(2)对离散傅里叶变换的结果,先取幅值,再取平方,最后取对数, F − 1 [⋅] F^{-1}[\cdot] F1[]是离散傅里叶逆变换。
    下面是每一步的演示图:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • 最后逆变换得到的倒谱图,横坐标为倒频率(Quefrency,频率的倒数,单位是秒),纵坐标是振幅。
  • 最后一张图中的所谓1st rhamonic,是从倒谱图的右边往左看的第一个尖峰,实际上,这个1st rhamonic对应原始信号的基频。
  • 要理解本节的内容,需要有离散傅里叶变换和梅尔时频谱图的知识,可以参考深入理解傅里叶变换(三)深入理解梅尔刻度、梅尔滤波器组和梅尔时频谱图

为什么倒谱图能提取音色

  • 最初发出振动从而产生声音的物体,被称为声源,对于语音而言,声源就是人的声带。
  • 人的肺部排出气体,这些气体通过声门(glottis),形成脉冲(glottis pulse),此时的脉冲频率决定了声音的音高,脉冲使声带振动,声带具有共振频率,会加强该脉冲。因为声源就是人的声带,所以声带的共振频率,称为此时这段语音的基频
  • 该脉冲还需要通过声道(vocal tract)才能从人的口中离开,成为能听到的语音。声道具有共振频率,随着声道的形状和大小变化,共振频率会发生变化,声道的共振频率的存在,使语音信号出现共振峰
  • 声门脉冲、基频和共振峰、声强,对应声音的三要素:音高、音色、响度。
    在这里插入图片描述
  • 那么倒谱图为什么能提取音色呢?我们想象最开始通过声门的气体,是一种信号,称为Glottal pulses,记为 h(t) h(t) h(t),声带和声道的作用等效为一个复杂的滤波器,记为 e(t) e(t) e(t),输出的语音信号是Glottal pulses被声道滤波后的信号,记为 x(t) x(t) x(t),注意,此时都是连续信号,那么存在下列等式:
    x ( t ) = h ( t ) ∗ e ( t ) x(t) = h(t) * e(t) x(t)=h(t)e(t)
  • 其中, ∗ * 指卷积运算。离散化之后,再进行离散傅里叶变换,时域卷积等价于频域乘积:
    X ( n ) = H ( n ) ⋅ E ( n ) X(n) = H(n) \cdot E(n) X(n)=H(n)E(n)
  • 接下来,先取幅值,再取平方,最后取对数:
    l o g [ ∣ X ( n ) ∣ 2 ] = 2 l o g ∣ H ( n ) ∣ + 2 l o g ∣ E ( n ) ∣ log[|X(n)|^2] = 2log|H(n)| + 2log|E(n)| log[X(n)2]=2logH(n)+2logE(n)
  • 现在已经将语音信号,分解成两个信号的和了,如下图:
    在这里插入图片描述
  • 左下角是 2log∣E(n)∣ 2log|E(n)| 2logE(n),右下角是 2log∣H(n)∣ 2log|H(n)| 2logH(n),左下角实际上是语音信号的包络线,右下角是语音信号减去包络线之后的信号。其中,包络线有几个突起的峰(原本应该是尖峰,取对数之后平滑了),表征了基频和共振峰,是我们希望提取的信号。
  • 最后一步是是用离散傅里叶逆变换,得到倒谱图。

MFCC

  • 对于一段音频,MFCC的提取流程如下:
    1. 对音频信号进行预加重,从而降低部分高频能量。这一步可以简单采用下式处理:
      x [ n ] = x [ n ] − α x [ n − 1 ] , 0.9 ≤ α ≤ 1.0 x[n] = x[n] - \alpha x[n-1],0.9 \le \alpha \le 1.0 x[n]=x[n]αx[n1],0.9α1.0
    2. 短时傅里叶变换
    3. 梅尔滤波器滤波,得到梅尔时频谱图
    4. 取对数,分离信号
    5. 离散余弦变换
    6. 选取倒谱系数
  • MFCC的提取过程改良了最后一步,把离散傅里叶逆变换,改成了离散余弦变换。
  • 因为log-power spectrum的信号,可以视为两个信号的叠加,而我们要提取的基频和共振峰,可以视为叠加后的信号的低频部分。
  • 所以MFCC将log-power spectrum视为一种时域信号,对其进行傅里叶分析,然后取前 n m f c c n_{mfcc} nmfcc 个频率所对应的运算值,作为最后的MFCC特征。
  • 此外,使用离散余弦变换有如下的好处:
    • 是简化版的离散傅里叶变换
    • 运算结果是实数,正是MFCC所需要的
    • 解耦了不同梅尔滤波器组之间的重合权重,使提取出的特征更加相互独立,适用于机器学习
    • 输入log-power spectrum,输出MFCC特征,起到了降维作用

MFCC的输出

  • 通常选取前12个系数,再拼接一个当前frame的能量,共13个。

  • 越靠前的系数,包含越多的基频和共振峰的信息。

  • 取得13个系数后,还会在时序上,对13个系数求一阶差分和二阶差分,二阶差分等价于对一阶差分求一阶差分。一阶差分有后向差分、前向差分的区别,也可以对后向差分和前向差分求均值得到中心差分,中心差分误差最小:

    • 前向差分
      Δ x [ n ] = x [ n + 1 ] − x [ n ] \Delta x[n] = x[n+1] - x[n] Δx[n]=x[n+1]x[n]
    • 后向差分
      Δ x [ n ] = x [ n ] − x [ n − 1 ] \Delta x[n] = x[n] - x[n-1] Δx[n]=x[n]x[n1]
    • 中心差分
      Δ x [ n ] = x [ n + 1 ] − x [ n − 1 ] 2 \Delta x[n] = \frac{x[n+1]-x[n-1]}{2} Δx[n]=2x[n+1]x[n1]

    其中, x [ n ] x[n] x[n]表示第n帧的13个系数,将一阶差分和二阶差分与原函数值拼接起来,得到39个系数。

  • MFCC的输出可以表示为一个二维数组,shape为 [ n m f c c , f r a m e s ] [n_{mfcc},frames] [nmfcc,frames],由于是二维数组,所以可以用热力图可视化

MFCC的优缺点

  • 优点
    • 相比较梅尔时频谱图,以更少的数据量描述了时频谱图的信息,前者滤波器个数通常为80,MFCC特征个数通常为39
    • 相比较梅尔时频谱图,特征之间的相关性更低,具有更好的区分性
    • 能提取出表征基频和共振峰的信息,滤去其他无关信息
    • 在基于GMM的声学模型中效果较好
  • 缺点
    • 相比较梅尔时频谱图,计算量更大,因为MFCC是在梅尔时频谱图的基础上得到的
    • 对噪声,尤其是加性噪声,不够鲁棒
    • 人工设计的痕迹太重,导致更大的经验风险
    • 对语音合成无效,因为不存在从MFCC特征到音频信号的逆变换

演示

  • 注意:librosa的MFCC提取算法
    • 默认没有将当前frame的能量作为第13个系数,可以自行求,然后拼接
    • 此外,默认没有一阶差分和二阶差分,也可以自行求,然后拼接
  • 下列代码就计算了一阶差分和二阶差分,然后拼接并可视化。
import librosaimport librosa.displayimport matplotlib.pyplot as pltimport numpy as npif "__main__" == __name__:    filepath = r"20- Extracting MFCCs with python\female_audio.wav"    signal, sr = librosa.load(path=filepath, sr=16000)    N_FFT = 512    N_MELS = 80    N_MFCC = 13    mel_spec = librosa.feature.melspectrogram(y=signal,                  sr=sr,                  n_fft=N_FFT,                  hop_length=sr // 100,                  win_length=sr // 40,                  n_mels=N_MELS)    mfcc = librosa.feature.mfcc(S=librosa.power_to_db(mel_spec), n_mfcc=N_MFCC)    delta_mfcc = librosa.feature.delta(data=mfcc)    delta2_mfcc = librosa.feature.delta(data=mfcc, order=2)    mfcc = np.concatenate([mfcc, delta_mfcc, delta2_mfcc], axis=0)    librosa.display.specshow(data=mfcc, sr=sr, n_fft=N_FFT, hop_length=sr // 100, win_length=sr // 40, x_axis="s")    plt.colorbar(fORMat="%d")    plt.show()

在这里插入图片描述

  • 音频信号处理的知识非常广袤,本系列只讲解了用于机器学习的音频信号处理知识。

来源地址:https://blog.csdn.net/m0_46324847/article/details/128274708

--结束END--

本文标题: 深入理解MFCC(梅尔频率倒谱系数)

本文链接: https://lsjlt.com/news/433031.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作