返回顶部
首页 > 资讯 > 后端开发 > Python >Cp Cpk Cg Cgk 1.33,1.67的由来
  • 831
分享到

Cp Cpk Cg Cgk 1.33,1.67的由来

概率论机器学习python 2023-10-18 10:10:15 831人浏览 八月长安

Python 官方文档:入门教程 => 点击学习

摘要

在定义制造过程时,目标是确保生产的零件符合规格上限和下限(USL,LSL)。所以设计出过程能力这个概念,过程能力是衡量制造过程能够在规范范围内生产零件的一致性的参数。 基本想法很简单,让制造过程:

image

在定义制造过程时,目标是确保生产的零件符合规格上限和下限(USL,LSL)。所以设计出过程能力这个概念,过程能力是衡量制造过程能够在规范范围内生产零件的一致性的参数。
基本想法很简单,让制造过程:

  1. 以设计工程师要求的标称值为中心
  2. 变异性的规格宽度窄。
    Cp是零件变异是否小于公差宽度
    在这里插入图片描述

Cpk是零件变异和中心指数要小于公差宽度
在这里插入图片描述

以汽车过门作为零件变异的举例:
在这里插入图片描述

Cp=0.7 Cpk=0.7Cp=1.0 Cpk=1.0Cp=2.0 Cpk=0.7Cp=2.0 Cpk=2.0
驾驶员是不稳定的。汽车经常刮伤墙壁。会生产有缺陷的零件除非过程变异宽度减少且过程是居中的。驾驶员还是不稳定但与以前相比好一点。也经常会靠近墙壁。很可能有缺陷,除非变异宽度减少。驾驶员无法使汽车居中。但是他始终如一-总是离得一侧太近。是可能有缺陷,除非过程是重新居中的。驾驶员总能成功通过。过程是居中,并且分布狭窄。不太可能有缺陷即使过程发生了变化稍微向两侧倾斜。

表格来源:

image

那么这些参数怎么来的呢?首先

Cp= U S L − L S L 6 σ Cp = \frac{USL-LSL}{6\sigma} Cp=6σUSLLSL

Cpk={ U S L − X ‾ 3 σ ; X ‾ − L S L 3 σ } Cpk = \{\frac{USL-\overline{X}}{3\sigma};\frac{\overline{X}-LSL}{3\sigma}\} Cpk={3σUSLX;3σXLSL}

设如果随机变量的 X X X的概率密度为

p(x)= 1 2 π σ e − ( x − μ ) 2 2 σ 2 p(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}} p(x)=2π σ1e2σ2(xμ)2

则称变量 X X X服从参数为 μ \mu μ , σ2 \sigma^2 σ2的正态分布。记作 X ∽ N ( μ , σ2 ) X \backsim N(\mu,\sigma^2) XN(μ,σ2)
计算 μ = 0 \mu=0 μ=0 , σ2 = 1 \sigma^2=1 σ2=1的正态分布函数

# -*- coding: utf-8 -*-""" python program for plot Gauss function"""import numpy as npimport mathimport matplotlib.pyplot as pltfrom scipy import integratedef gd(x, mu=0, sigma=1):    # Gauss Disbutrion    left = 1 / (np.sqrt(2 * math.pi) * np.sqrt(sigma))    right = np.exp(-(x - mu)**2 / (2 * sigma))    return left * rightif __name__ == '__main__':    x = np.arange(-7, 7, 0.1)    y_1 = gd(x, 0, 0.2)    y_2 = gd(x, 0, 1.0)    y_3 = gd(x, 0, 5.0)    y_4 = gd(x, -2, 0.5)    #  plot    plt.plot(x, y_2, color='blue')    #  set coordinate    plt.xlim(-7.0, 7.0)    plt.ylim(-0.2, 1)    plt.legend(labels=['$\mu = 0, \sigma^2=1.0$'])    sigma_1 = integrate.quad(gd,-1,1)    sigma_1_percent = "%.3f%%" % (sigma_1[0] * 100)    sigma_2 = integrate.quad(gd,-2,2)    sigma_2_percent = "%.3f%%" % (sigma_2[0] * 100)    sigma_3 = integrate.quad(gd,-3,3)    sigma_3_percent = "%.3f%%" % (sigma_3[0] * 100)    sigma_6 = integrate.quad(gd,-6,6)    sigma_6_percent = "%.20f%%" % (sigma_6[0] * 100)            # plot 1 time sigma     plt.plot([1,1],[0,gd(1,0,1)])    plt.plot([-1,-1],[0,gd(-1,0,1)])    plt.text(-1,0.2,sigma_1_percent,fontsize=15)            # plot 2 time sigma    plt.plot([2,2],[0,gd(2,0,1)])    plt.plot([-2,-2],[0,gd(-2,0,1)])    plt.text(-2,0.05,sigma_2_percent,fontsize=15)            # plot 6 time sigma    plt.plot([6,6],[-1,gd(6,0,1)])    plt.plot([-6,-6],[-1,gd(-6,0,1)])    plt.text(-6,-0.1,sigma_6_percent,fontsize=15)               plt.show()

∫ − 1 1 f(x)dx=0.68269 \int_{-1}^{1} f(x)dx = 0.68269 11f(x)dx=0.68269

∫ − 2 2 f(x)dx=0.95450 \int_{-2}^{2} f(x)dx = 0.95450 22f(x)dx=0.95450

∫ − 3 3 f(x)dx=0.99730 \int_{-3}^{3} f(x)dx = 0.99730 33f(x)dx=0.99730

∫ − 6 6 f(x)dx=0.9999999980 \int_{-6}^{6} f(x)dx = 0.9999999980 66f(x)dx=0.9999999980

image

简单的只从Cp出发,假设平均值和名义中心重合,公差是 + / − 6 σ +/-6\sigma +/6σ的时候合格率可以达到99.9999998%,而合格率想达到99.73%那么的公差宽度就得等于 + / − 3 σ +/-3\sigma +/3σ
Cp= 6 σ 6 σ =1 Cp = \frac{6\sigma}{6\sigma} =1 Cp=6σ6σ=1
而合格率想达到99.9936%公差宽度得等于 + / − 4 σ +/-4\sigma +/4σ

Cp= 8 σ 6 σ =1.33 Cp = \frac{8\sigma}{6\sigma} =1.33 Cp=6σ8σ=1.33

而Cg,Cgk有异曲同工之妙:
C g = 0.2 T 6 σ C_g = \frac{0.2T}{6\sigma} Cg=6σ0.2T

在这里插入图片描述

来源地址:https://blog.csdn.net/LJM1200/article/details/130612289

--结束END--

本文标题: Cp Cpk Cg Cgk 1.33,1.67的由来

本文链接: https://lsjlt.com/news/430740.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • Cp Cpk Cg Cgk 1.33,1.67的由来
    在定义制造过程时,目标是确保生产的零件符合规格上限和下限(USL,LSL)。所以设计出过程能力这个概念,过程能力是衡量制造过程能够在规范范围内生产零件的一致性的参数。 基本想法很简单,让制造过程: ...
    99+
    2023-10-18
    概率论 机器学习 python
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作