返回顶部
首页 > 资讯 > 移动开发 >自编R语言小程序助力孟德尔随机化(Mendelian Randomization)数据挖掘
  • 826
分享到

自编R语言小程序助力孟德尔随机化(Mendelian Randomization)数据挖掘

r语言小程序开发语言 2023-10-09 16:10:52 826人浏览 安东尼
摘要

咱们再前两期已经对孟德尔随机化进行了一个初步的介绍,孟德尔随机化步骤相对简单固定,一共就是3步,但是如果我们一个一个的对研究变量和结果数据进行筛选,也是挺费时间的,我随手写了一个R的小程序可以帮助咱们

咱们再前两期已经对孟德尔随机化进行了一个初步的介绍,孟德尔随机化步骤相对简单固定,一共就是3步,但是如果我们一个一个的对研究变量和结果数据进行筛选,也是挺费时间的,我随手写了一个R的小程序可以帮助咱们进行数据挖掘
在这里插入图片描述
其实就是一个很简单的小程序,主要是对孟德尔随机化的步骤进行了打包,利用双循环对研究变量和结果变量进行匹配。函数体为

Mendelian.help (exposure,outcome)

Exposure就是我们的研究变量,outcome就是我们的结果变量。
假设我们研究的想研究的原因变量有两个"ieu-a-22",“prot-b-66”,想研究的结局变量有3个"finn-b-O15_MEMBR_PREMAT_RUPT",“ukb-b-12621”,“finn-b-O15_PLAC_PREMAT_SEPAR”,如果我们一个一个的做也是要花费一定时间的,如果变量更多就需要更多时间了。
我们先定义暴露变量和结果变量

exposure<-c("ieu-a-22","prot-b-66")outcome<-c("finn-b-O15_MEMBR_PREMAT_RUPT","ukb-b-12621","finn-b-O15_PLAC_PREMAT_SEPAR")

然后生成结果,非常简单吧。

out<-Mendelian.help(exposure=exposure,outcome=outcome)

在这里插入图片描述
这样就结果就生成啦,我们可以看到每个暴露变量和结果变量匹配的情况,看出有没有意义,对于大规模变量的筛选我个人认为还是有帮助的。P值的筛选是通过孟德尔随机化P值中最要的方法Inverse variance weighted提取出的P值。

在这里插入图片描述
然而这个函数也是有部分缺点的,第一就是它是通过在线下载数据,如果你的网络不行,下载不到数据,它就会报错,所以因在网络比较好的时候进行(如白天)。如下图就是下载不到数据

在这里插入图片描述
第二就是如果你第一步提取的SNP数据过少只有1-2个的话,在第二步有可能匹配不上,也会报错。

最后,虽然这是一个非常简单的小程序,没有什么技术含量,但是也是有构思在里面的,不能免费贴出来烂大街,需要的公众号回复:代码,可以获得该程序。

来源地址:https://blog.csdn.net/dege857/article/details/131548009

--结束END--

本文标题: 自编R语言小程序助力孟德尔随机化(Mendelian Randomization)数据挖掘

本文链接: https://lsjlt.com/news/426464.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作