返回顶部
首页 > 资讯 > 后端开发 > Python >使用Python进行数据分析——线性回归分析
  • 869
分享到

使用Python进行数据分析——线性回归分析

python数据分析Poweredby金山文档 2023-10-04 19:10:51 869人浏览 薄情痞子

Python 官方文档:入门教程 => 点击学习

摘要

大家好,线性回归是确定两种或两种以上变量之间互相依赖的定量关系的一种统计分析方法。根据自变量的个数,可以将线性回归分为一元线性回归和多元线性回归分析。 一元线性回归:就是只包含一个自变量,且该自变量与因变量之间的关系是线性关系。例如通过广

大家好,线性回归是确定两种或两种以上变量之间互相依赖的定量关系的一种统计分析方法。根据自变量的个数,可以将线性回归分为一元线性回归和多元线性回归分析。

一元线性回归:就是只包含一个自变量,且该自变量与因变量之间的关系是线性关系。例如通过广告费这一个自变量来预测销量,就属于一元线性回归分析。

多元线性回归:如果回归分析包含两个或以上的自变量,且每个因变量与自变量之间都是线性关系,,则成为多元线性回归分析;例如通过肥料、灌溉等人工成本来预测产量,就属于多元线性回归。

一、线性回归分析的思路

  • 确定因变量与自变量。比如通过人工成本费进行产量预测时,人工成本费是自变量,产量是因变量。

  • 确定线性回归分析的类型。例如在一元线性回归分析中,只需要确定自变量与因变量的相关度为强相关性,即可建立一元线性回归方程,从而确定线性回归分析的类型为一元线性回归。

  • 建立线性回归分析模型

  • 检验线性回归分析模型的拟合程度。为了判断线性回归分析模型是否可用于实际检测,需要检验线性回归分析模型的拟合程度,也就是对模型进行评估,主要以这三个值作为评估标准:(R-squared统计学中的)、Adj.R-squared(即Adiustd )、P值;其中前两个用来衡量线性拟合的拟合程度,P值用来衡量特征变量的显著性。

  • 利用线性回归分析模型进行预测。如果拟合出来的回归分析模型的拟合度符合要求,就可以使用该模型以及计算出的系数a和b得到回归方程,从而根据已有的自变量数据来预测需要的因变量结果。

二、一元线性回归分析

那我们初中学过的一元一次方程y=ax+b来说:就是最简单的一元线性回归,接下来,我们以上图数据为例,假设当人工成本为6600元时,产量为多少?我们下面就这一实际生产问题问题进行一元线性回归分析代码演示。

确定因变量与自变量:

import pandas as pddata= pd.read_excel('D:/shujufenxi/作物表型记录本.xlsx',sheet_name=0,index_col='序号')print(data.head())

我们要进行的是根据已知的6600人工成本预测产量,由此可知,人工成本费为自变量,产量为因变量。

确定线性回归分析的类型:

import pandas as pddata= pd.read_excel('D:/shujufenxi/作物表型记录本.xlsx',sheet_name=0,index_col='序号')print(data.head())# 选中自变量与因变量的数据,x为自变量,y为因变量x=data[['人工成本费(元)']]y=data[['产量(公斤)']]# 确定线性回归分析的类型corr=data.corr()print(corr)

可以看到人工成本与产量之间的相关系数为0.965321,为强相关,随后利用Matplotlib模块进行绘制散点图,代码如下:

# 绘制散点图import matplotlib.pyplot as pltplt.rcParams['font.sans-serif']=['SimHei']plt.rcParams['axes.unicode_minus']=Falseplt.scatter(x,y)plt.xlabel('人工成本费(元)')plt.ylabel('产量(公斤)')plt.show()

建立回归分析模型以及检验线性回归分析模型的拟合程度:

#建立回归分析模型from sklearn.linear_model import LinearRegression  # 需下载Scikit-Learn模块,使用LinearRegression()函数建立线性回归分析模型Model=LinearRegression()Model.fit(x,y)#检验线性回归分析模型的拟合程度score=Model.score(x,y)print(score)plt.scatter(x,y)plt.plot(x,Model.predict(x))plt.xlabel('人工成本费(元)')plt.ylabel('产量(公斤)')plt.show()

可以看出模型的评分约为0.93,很接近1,拟合程度还是较高的。

可以看出大多数散点还是比较靠近这条直线的,说明模型很好的捕捉到了数据特征,可以算是恰当拟合。

利用线性回归分析进行预测:

# 预测,也可以进行同时预测多个,如下y=Model.predict([[6600],[15000],[8888]])print(y)

三、多元线性回归分析

下面我们利用此虚拟数据假设当农药成本费、肥料成本费、田间管理成本费分别为3400、2900、3100时的产量为多少,下面我们将进行完整代码演示:

## 确定自变量与因变量import pandas as pddata= pd.read_excel('D:/shujufenxi/作物表型记录本.xlsx',sheet_name=1,index_col='序号')print(data.head())# 选中自变量与因变量的数据,x为自变量,y为因变量x=data[['农药成本费(元)','肥料成本费(元)','田间管理成本费(元)']]y=data[['产量(公斤)']]# 确定线性回归分析的类型——图3corr=data.corr()print(corr)# 绘制散点图——图1import matplotlib.pyplot as pltimport seaborn as snsplt.rcParams['font.sans-serif']=['SimHei']plt.rcParams['axes.unicode_minus']=Falsesns.pairplot(data,x_vars=['农药成本费(元)','肥料成本费(元)','田间管理成本费(元)'],y_vars='产量(公斤)')plt.show()#建立回归分析模型from sklearn.linear_model import LinearRegression  # 需下载Scikit-Learn模块,使用LinearRegression()函数建立线性回归分析模型Model=LinearRegression()Model.fit(x,y)#检验线性回归分析模型的拟合程度——图3score=Model.score(x,y)print(score)# 绘制拟合成果图——图2sns.pairplot(data,x_vars=['农药成本费(元)','肥料成本费(元)','田间管理成本费(元)'],y_vars='产量(公斤)',kind='reg')# kind参数可添加一条最佳拟合直线和95%的置信带,从而更直观的展示模型的拟合程度plt.show()# 预测,也可以进行同时预测多个,如下——图3y=Model.predict([[3400,2900,3100]])print(y)

以上就是根据此数据所进行的多元线性回归分析以及模型预测;在上面第二个图中,我们从置信带的宽度来看,农药成本费与产量的线性关系较强,肥料成本费、田间管理成本费两者与产量的线性关系则较弱。

本文所讲对模型进行拟合在实际生产中具有重大意义,不仅可以利用已知变量预测未知变量,还能根据拟合结果判断所得数据是否具有生产意义。

来源地址:https://blog.csdn.net/csdn1561168266/article/details/129214694

--结束END--

本文标题: 使用Python进行数据分析——线性回归分析

本文链接: https://lsjlt.com/news/423490.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • 使用Python进行数据分析——线性回归分析
    大家好,线性回归是确定两种或两种以上变量之间互相依赖的定量关系的一种统计分析方法。根据自变量的个数,可以将线性回归分为一元线性回归和多元线性回归分析。 一元线性回归:就是只包含一个自变量,且该自变量与因变量之间的关系是线性关系。例如通过广...
    99+
    2023-10-04
    python 数据分析 Powered by 金山文档
  • Python线性回归分析
    这篇文章主要介绍“Python线性回归分析”,在日常操作中,相信很多人在Python线性回归分析问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Python线性回归分析”的疑惑有所帮助!接下来,请跟着小编一起来...
    99+
    2023-06-25
  • python数据分析之线性回归选择基金
    目录1 前言2 基金趋势分析3 数据抓取与分析3.1 基金数据抓取3.2 数据分析4 总结1 前言 在前面的章节中我们牛刀小试,一直在使用python爬虫去抓取数据,然后把数据信息存...
    99+
    2024-04-02
  • 回归预测分析python数据化运营线性回归总结
    目录内容介绍一般应用场景线性回归的常用方法线性回归实现线性回归评估指标线性回归效果可视化数据预测内容介绍 以 Python 使用 线性回归 简单举例应用介绍回归分析。 线性回归是利用...
    99+
    2024-04-02
  • 如何用Python进行回归分析与相关分析
    目录一、前言1.1 回归分析1.2 相关分析二、代码的编写2.1 前期准备2.2 编写代码2.2.1 相关分析 2.2.2 一元线性回归分析 2.2.3 多元线性...
    99+
    2023-03-22
    python python回归分析 python相关分析
  • 数据分析算法---线性回归(初识)
              最近在学习数据分析线性回归算法时,产生了很多疑问。作为初学者,我认为应该先从基本概念上进行一些深度理解。下面将我的一些思考总结如下:         线性回归模型为: (1)         其中ε是剩余误差,假设它服...
    99+
    2023-01-30
    线性 算法 数据
  • 数据分析:OLS回归分析
      变量之间存在着相关关系,比如,人的身高和体重之间存在着关系,一般来说,人高一些,体重要重一些,身高和体重之间存在的是不确定性的相关关系。回归分析是研究相关关系的一种数学工具,它能帮助我们从一个变...
    99+
    2024-04-02
  • 使用Python进行数据分析——方差分析
    大家好,方差分析可以用来判断几组观察到的数据或者处理的结果是否存在显著差异。本文介绍的方差分析(Analysis of Variance,简称ANOVA)就是用于检验两组或者两组以上样本的均值是否具备显著性差异的一种数理统计方法。 根据影...
    99+
    2023-09-12
    数据分析 数据挖掘 信息可视化 Powered by 金山文档
  • 【数学建模】-多元线性回归分析
    文章目录 回归的思想回归分析:研究X和Y之间相关性的分析。相关性因变量Y自变量X 回归分析的使命回归分析的分类数据的分类一元线性回归对于线性的理解回归系数的解释内生性的探究内生性...
    99+
    2023-10-05
    线性回归 回归 机器学习 matlab
  • python-sklearn数据分析-线性回归和支持向量机(SVM)回归预测(实战)
    注:本文是小编学习实战心得分享,欢迎交流讨论!话不多说,直接附上代码和图示说明。 目录 一、分段示例 1.导入必要的库 2.读取数据,查看数据基本信息 3.简单查看有无重复值 4.对列名进行分类,便于后面的操作,其中最后一列为预测标签数据 ...
    99+
    2023-09-07
    sklearn python 回归
  • 如何分析spark-mlib的线性回归
    如何分析spark-mlib的线性回归,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。import org.apache.spark.SparkConfimport...
    99+
    2023-06-02
  • 怎么使用Python进行数据分析
    使用Python进行数据分析可以通过以下几个步骤:1. 安装Python和相关库:首先需要安装Python解释器,推荐使用Anaco...
    99+
    2023-08-23
    Python
  • Python 机器学习之线性回归详解分析
    为了检验自己前期对机器学习中线性回归部分的掌握程度并找出自己在学习中存在的问题,我使用C语言简单实现了单变量简单线性回归。 本文对自己使用C语言实现单变量线性回归过程中遇到的问题和心...
    99+
    2024-04-02
  • 使用python进行Oracle数据库性能趋势分析
    一、   概述 ...
    99+
    2024-04-02
  • MATLAB中如何实现线性回归分析
    在MATLAB中,可以使用polyfit函数来实现线性回归分析。下面是一个简单的示例代码: % 创建一组样本数据 x = [1, 2...
    99+
    2024-04-03
    matlab
  • Python怎么使用Pandas进行数据分析
    首先,确保您已经安装了Pandas库。如果没有,请使用以下命令安装:pip install pandas一. 导入Pandas库import pandas as pd二. 读取数据使用Pandas,可以方便地读取多种数据格式,包括CSV、E...
    99+
    2023-05-16
    Python Pandas
  • python进行词性分析
    表示python的nltk包真的很好用,本来想着自己从字典里面抓数据的,后来师兄建议用nltk包, http://www.nltk.org/install.html 按照方法安装了包,接下来 import nltk nltk.down...
    99+
    2023-01-31
    词性 python
  • 如何用python进行数据分析
    Python是一个非常强大的数据分析工具,它提供了丰富的库和函数来处理、分析、可视化数据,并在各个领域得到了广泛应用。本文将介绍如何使用Python进行数据分析。以下按照流程简述如下: 数据预处理 数据预处理通常是数据分析的第一步,这个过程...
    99+
    2023-09-08
    信息可视化
  • 利用Python进行数据分析_Panda
    申明:本系列文章是自己在学习《利用Python进行数据分析》这本书的过程中,为了方便后期自己巩固知识而整理。 import pandas as pd import numpy as np file = 'D:\example.xls'...
    99+
    2023-01-30
    数据 Python _Panda
  • 怎么用Python进行数据分析
    这篇文章主要讲解了“怎么用Python进行数据分析”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么用Python进行数据分析”吧!评论情感倾向先调用百度AI来分析微博和b站的评论情感倾向。...
    99+
    2023-06-01
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作