返回顶部
首页 > 资讯 > 数据库 >基于华为云的在线拍卖数据分析
  • 353
分享到

基于华为云的在线拍卖数据分析

mysqlhadoophive大数据 2023-09-30 21:09:35 353人浏览 八月长安
摘要

实验设备与平台: mapReduce服务 MRS弹性公网IP弹性云服务器ECS基于aarch64架构的Mysql,MiniConda,Sqoop 1 数据集准备 删除csv文件中无意义的特征:

实验设备与平台:

1 数据集准备
  1. 删除csv文件中无意义的特征:ReturnsAccepted
  2. 通过WinSCP将csv文件传输到华为云文件系统/home/zkpk/raw/位置
mkdir /home/zkpkmkdir /home/zkpk/raw
  1. 通过shell命令去除文件的首行字段
cd /home/zkpk/raw/sed -i '1d' TrainingSet.csvsed -i '1d' TestSet.csv
  1. 将csv文件上传到hdfs
hadoop fs -put TrainingSet.csv /zkpk/raw/hadoop fs -put TestSet.csv /zkpk/raw/hadoop fs -ls /zkpk/raw/
2 数据集预处理
  1. 启动Hive,并创建数据库zkpk
SHOW DATABASES;CREATE DATABASE zkpk;SHOW DATABASES;
  1. 对训练集创建外部表traingingset_log并导入数据
CREATE EXTERNAL TABLE zkpk.trainingset_log(EbayID STRING,QuantitySold INT,Price FLOAT,PricePercent FLOAT,StartingBidPercent FLOAT,SellerName STRING,SellerClosePercent DOUBLE,CateGory INT,PersonID STRING,StartingBid FLOAT,AvgPrice FLOAT,EndDay STRING,HitCount INT,AuctionAvgHitCount INT,ItemAuctionSellPercent INT,SellerSaleAvgPriceRatio DOUBLE,SellerAvg DOUBLE,SellerItemAvg INT,AuctionHitCountAvgRatio INT,BestOffer DOUBLE,IsHOF INT,ItemListedCount INT,AuctionCount INT,AuctionSaleCount INT,SellerAuctionCount INT,SellerAuctionSaleCount INT,AuctionMedianPrice FLOAT)ROW FORMAT DELIMITED FIELDS TERMINATED BY ','STORED AS TEXTFILE;load data inpath '/zkpk/raw/TrainingSet.csv' into table trainingset_log;
  1. 测试集创建外部表testset_log并导入数据
CREATE EXTERNAL TABLE zkpk.testset_log(EbayID STRING,QuantitySold INT,Price FLOAT,PricePercent FLOAT,StartingBidPercent FLOAT,SellerName STRING,SellerClosePercent DOUBLE,Category INT,PersonID STRING,StartingBid FLOAT,AvgPrice FLOAT,EndDay STRING,HitCount INT,AuctionAvgHitCount INT,ItemAuctionSellPercent INT,SellerSaleAvgPriceRatio DOUBLE,SellerAvg DOUBLE,SellerItemAvg INT,AuctionHitCountAvgRatio INT,BestOffer DOUBLE,IsHOF INT,ItemListedCount INT,AuctionCount INT,AuctionSaleCount INT,SellerAuctionCount INT,SellerAuctionSaleCount INT,AuctionMedianPrice FLOAT)ROW FORMAT DELIMITED FIELDS TERMINATED BY ','STORED AS TEXTFILE;load data inpath '/zkpk/raw/TestSet.csv' into table testset_log;
3 数据集分析处理
  1. 统计 TrainingSet 中拍买成功交易的平均成交价并保存
CREATE TABLE avg_price(avg_price FLOAT)ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE;Insert OVERWRITE TABLE avg_priceSELECT avg(Price) FROM trainingset_log WHERE QuantitySold=1;
  1. 统计 TrainingSet 中金牌卖家的拍卖成功率,降序排列并保存
CREATE TABLE success_rate_temp(SellerName STRING,Rate DOUBLE)ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE;INSERT OVERWRITE TABLE success_rate_temp SELECT SellerName,sum(QuantitySold)/count(QuantitySold)FROM trainingset_log WHERE IsHOF=1 GROUP BY SellerName;CREATE TABLE success_rate_desc(SellerName STRING,Rate DOUBLE)ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE;INSERT OVERWRITE TABLE success_rate_desc SELECT * FROM success_rate_temp ORDER BY Rate DESC;drop table success_rate_temp;
  1. 统计TrainingSet和TestSet中周一到周日,每天拍卖成功的数量及拍卖成功率并保存
CREATE TABLE train_day_rate(EndDay STRING,Success INT,Rate DOUBLE) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE;INSERT OVERWRITE TABLE train_day_rate SELECT EndDay,sum(QuantitySold),sum(QuantitySold)/count(QuantitySold) FROM trainingset_log GROUP BY EndDay;
CREATE TABLE test_day_rate(EndDay STRING,Success INT,Rate DOUBLE) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE;INSERT OVERWRITE TABLE test_day_rate SELECT EndDay,sum(QuantitySold),sum(QuantitySold)/count(QuantitySold) FROM testset_log GROUP BY EndDay;
  1. 筛选出TrainingSet和TestSet数据中的EbayID,Quantitiysold字段,保存为train_label文件和test_label文件
CREATE TABLE train_label(EbayID STRING, QuantitySold Int)ROW FORMAT DELIMITED FIELDS TERMINATED BY ','STORED AS TEXTFILE;INSERT OVERWRITE TABLE train_label SELECTEbayID, QuantitySold FROM trainingset_log;
CREATE TABLE test_label(EbayID STRING, QuantitySold Int)ROW FORMAT DELIMITED FIELDS TERMINATED BY ','STORED AS TEXTFILE;INSERT OVERWRITE TABLE test_label SELECTEbayID, QuantitySold FROM testset_log;
  1. 从TrainingSet和TestSet数据中删除的SellerName,QuantiySold,EndDay字段,并将数据导出保存为train_data文件和test_data文件
CREATE TABLE train_data (EbayID STRING,Price FLOAT,PricePercent FLOAT,StartingBidPercent FLOAT,SellerClosePercent DOUBLE,Category INT,PersonID STRING,StartingBid FLOAT,AvgPrice FLOAT,HitCount INT,AuctionAvgHitCount INT,ItemAuctionSellPercent INT,SellerSaleAvgPriceRatio DOUBLE,SellerAvg DOUBLE,SellerItemAvg INT,AuctionHitCountAvgRatio INT,BestOffer DOUBLE,IsHOF INT,ItemListedCount INT,AuctionCount INT,AuctionSaleCount INT,SellerAuctionCount INT,SellerAuctionSaleCount INT,AuctionMedianPrice FLOAT)ROW FORMAT DELIMITED FIELDS TERMINATED BY ','STORED AS TEXTFILE;INSERT OVERWRITE TABLE train_data SELECT EbayID,Price,PricePercent,StartingBidPercent,SellerClosePercent,Category,PersonID,StartingBid,AvgPrice,HitCount,AuctionAvgHitCount,ItemAuctionSellPercent,SellerSaleAvgPriceRatio,SellerAvg,SellerItemAvg,AuctionHitCountAvgRatio,BestOffer,IsHOF,ItemListedCount,AuctionCount,AuctionSaleCount,SellerAuctionCount,SellerAuctionSaleCount,AuctionMedianPrice FROM trainingset_log;
CREATE TABLE test_data (EbayID STRING,Price FLOAT,PricePercent FLOAT,StartingBidPercent FLOAT,SellerClosePercent DOUBLE,Category INT,PersonID STRING,StartingBid FLOAT,AvgPrice FLOAT,HitCount INT,AuctionAvgHitCount INT,ItemAuctionSellPercent INT,SellerSaleAvgPriceRatio DOUBLE,SellerAvg DOUBLE,SellerItemAvg INT,AuctionHitCountAvgRatio INT,BestOffer DOUBLE,IsHOF INT,ItemListedCount INT,AuctionCount INT,AuctionSaleCount INT,SellerAuctionCount INT,SellerAuctionSaleCount INT,AuctionMedianPrice FLOAT)ROW FORMAT DELIMITED FIELDS TERMINATED BY ','STORED AS TEXTFILE;INSERT OVERWRITE TABLE test_data SELECT EbayID,Price,PricePercent,StartingBidPercent,SellerClosePercent,Category,PersonID,StartingBid,AvgPrice,HitCount,AuctionAvgHitCount,ItemAuctionSellPercent,SellerSaleAvgPriceRatio,SellerAvg,SellerItemAvg,AuctionHitCountAvgRatio,BestOffer,IsHOF,ItemListedCount,AuctionCount,AuctionSaleCount,SellerAuctionCount,SellerAuctionSaleCount,AuctionMedianPrice FROM testset_log;
4 数据集导出
  1. 安装并配置mysql环境
# 安装wgetyum -y install wget# 远程下载Mysql压缩包wget https://mirrors.tuna.tsinghua.edu.cn/mysql/downloads/MySQL-8.0/mysql-8.0.26-1.el8.aarch64.rpm-bundle.tar# 解压MySQL并安装tar -xvf mysql-8.0.26-1.el8.aarch64.rpm-bundle.taryum install *.rpm# 启动MySQL服务并查看运行状态systemstl start mysqlsystemstl status mysql# 设置开机启动MySQL服务systemctl enable mysqldsystemctl daemon-reload# 查看临时数据库密码grep 'temporary passWord' /var/log/mysqld.log# 修改密码 未修改密码策略ALTER USER 'root'@'localhost' IDENTIFIED BY '20001215,Cj';# 启动MySQL服务mysql -uroot -p
  1. 设置远程连接用户:通过主机的Navicat for MySQL连接云服务器的MySQL
# 创建远程连接用户create user 'zkpk'@'%' identified by '20001215,Cj';# 授予用户权限grant all on *.* to 'zkpk'@'%';# 更改加密方式ALTER USER 'zkpk'@'%' IDENTIFIED BY '20001215,Cj' PASSWORD EXPIRE NEVER;# 刷新权限flush privileges;
  1. 从HDFS导出数据到本地文件系统
# 查看表格在HDFS上的存储位置show create table 表格名;
# 查看表格在HDFS上的数据存放位置下的文件内容hadoop fs -ls location# 导出表格到本地文件系统hadoop fs -get location /home/zkpk/
  1. 从HDFS导出数据到MySQL数据库
# 获取表格在HDFS的存储位置use zkpk;show create table 表格名;
# 将HDFS中文件存储到本地文件系统hadoop fs -get location /home/zkpk/result/# 登录MySQLmysql --local_infile=1 -u root -p
# 在MySQL中创建对应表格# 加载本地文件系统的表格到MySQLLOAD DATA LOCAL INFILE '/home/zkpk/result/textfile' INTO TABLE zkpk.表格名 FIELDS TERMINATED BY ',' LINES TERMINATED BY '\n';
5 数据可视化展示
  1. 安装配置miniconda,并管理依赖包
wget Https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-py39_4.11.0-linux-aarch64.shsh Miniconda3-py39_4.11.0-Linux-aarch64.sh
# 进入conda环境conda activate# 加载依赖项conda install 依赖项# 运行python文件Python 路径+文件名# 退出conda环境conda deactivate
  1. 编写可视化程序
import pymysqlimport pandas as pdimport matplotlib.pyplot as pltdb = pymysql.connect(host='localhost', user='root', password='20001215,Cj', database='zkpk')cursor = db.cursor()sql = 'select EndDay, Success from train_day_rate'# sql = 'select EndDay, Rate from train_day_rate'# sql = 'select EndDay, Success from test_day_rate'# sql = 'select EndDay, Rate from test_day_rate'cursor.execute(sql)data = cursor.fetchall()cursor.close()db.close()print(data)df = pd.DataFrame(list(data),columns=['endDay', 'amount'])plt.figureplt.xlabel('day')plt.ylabel('amount')plt.bar(df['endDay'],df['amount'])plt.show()
  1. 华为云DLV组件实现可视化展示
6 拍卖成功率预测
  1. 从数据库获取数据集train_labeltrain_datatest_labeltest_data
import pandas as pdimport numpy as npimport seaborn as snsimport matplotlib.pyplot as pltimport pymysqldef getdataset():    # 连接数据库    # db = pymysql.connect(host='localhost', user='root', password='20001215,Cj', database='zkpk')    db = pymysql.connect(host='124.70.59.198', user='zkpk', password='20001215,Cj', database='zkpk')    cursor = db.cursor()    # 读取数据集 训练集    sql = 'select * from train_data'    cursor.execute(sql)    data = cursor.fetchall()    train_set= pd.DataFrame(list(data),columns=['EbayID','Price', 'PricePercent', 'StartingBidPercent',                    'SellerClosePercent','Category','PersonID',                    'StartingBid', 'AvgPrice', 'HitCount',                      'AuctionAvgHitCount',                    'ItemAuctionSellPercent', 'SellerSaleAvgPriceRatio',                    'SellerAvg', 'SellerItemAvg', 'AuctionHitCountAvgRatio',                    'BestOffer', 'IsHOF', 'ItemListedCount',                    'AuctionCount', 'AuctionSaleCount',                    'SellerAuctionCount', 'SellerAuctionSaleCount',                    'AuctionMedianPrice'])    print("the shape of train_set:", train_set.shape)    #训练集label    sql = 'select QuantitySold from train_label'    cursor.execute(sql)    data = cursor.fetchall()    train_label= pd.DataFrame(list(data),columns=['QuantitySold'])    print("the shape of train_label:", train_label.shape)    #测试集    sql = 'select * from test_data'    cursor.execute(sql)    data = cursor.fetchall()    test_set= pd.DataFrame(list(data),columns=['EbayID','Price', 'PricePercent', 'StartingBidPercent',                    'SellerClosePercent','Category','PersonID',                    'StartingBid', 'AvgPrice', 'HitCount',                    'AuctionAvgHitCount',                    'ItemAuctionSellPercent', 'SellerSaleAvgPriceRatio',                    'SellerAvg', 'SellerItemAvg', 'AuctionHitCountAvgRatio',                    'BestOffer', 'IsHOF', 'ItemListedCount',                    'AuctionCount', 'AuctionSaleCount',                    'SellerAuctionCount', 'SellerAuctionSaleCount',                    'AuctionMedianPrice'])    #测试集label    sql = 'select QuantitySold from test_label'    cursor.execute(sql)    data = cursor.fetchall()    test_label= pd.DataFrame(list(data),columns=['QuantitySold'])    cursor.close()    db.close()    #去掉与拍卖成功概率无关的特征EbayID    train_data = train_set.drop(['EbayID'], axis=1)    test_data = test_set.drop(['EbayID'], axis=1)    n_items, n_features = train_data.shape    #the number of total features    train_data.head()    return train_set, train_data, train_label, test_data, test_label
  1. 拍卖成功预测

随机小批量梯度下降法:minibatchSGDClassification.py

import pandas as pdimport matplotlib.pyplot as pltimport pymysqlimport numpy as npfrom GetDataSet import getdatasetfrom sklearn.linear_model import SGDClassifierfrom sklearn.preprocessing import StandardScalerfrom sklearn.metrics import precision_score, recall_score, f1_scoretrain_set, train_data, train_label, test_data, test_label = getdataset()# The results of mini_batch learning for SGDClassifier in the training process were drawndef plot_learning(clf, title):    plt.figure()    # Record the prediction of the last training result in this training    validationScore = []    # Record the forecast situation after adding this training result    trainScore = []    # Minimum training frequency    mini_batch = 1000    n_items = train_set.shape[0]    for i in range(int(np.ceil(n_items / mini_batch))):        x_batch = train_data[i * mini_batch: min((i + 1) * mini_batch, n_items)]        y_batch = train_label[i * mini_batch: min((i + 1) * mini_batch, n_items)]        if i > 0:            validationScore.append(clf.score(x_batch, y_batch))        clf.partial_fit(x_batch, y_batch, classes=range(5))        if i > 0:            trainScore.append(clf.score(x_batch, y_batch))        plt.plot(trainScore, label="train_score")        plt.plot(validationScore, label="validation_score")        plt.xlabel("Mini_batch")        plt.ylabel("Score")        plt.grid()        plt.title(title)        plt.savefig('test.jpg')# 对训练数据进行正则化scaler = StandardScaler()train_data = scaler.fit_transform(train_set.drop(['EbayID'], axis=1))#SGD二分类clf = SGDClassifier(penalty='l2', alpha=0.0004)plot_learning(clf, 'SGDClassifier')test_data = scaler.fit_transform(test_data)train_pred = clf.predict(train_data)test_pred = clf.predict(test_data)print("SGDClassifier training performance on testing dataset:")print("\tPrecision:%1.3f" % precision_score(test_label, test_pred, average='micro'))print("\tRecall:%1.3f" % recall_score(train_label, train_pred))print("\tF1:%1.3f \n" % f1_score(train_label, train_pred))

决策树:ExecutiveTree

import pandas as pdimport numpy as npimport seaborn as snsimport matplotlib.pyplot as pltimport pymysqlfrom sklearn import treefrom GetDataSet import getdatasettrain_set, train_data, train_label, test_data, test_label = getdataset()clf = tree.DecisionTreeClassifier()clf = clf.fit(train_data, train_label)print("Precision: ", clf.score(test_data, test_label))

逻辑回归:LogisticRegression.py

import pandas as pdimport numpy as npfrom sklearn.linear_model import LoGISticRegression as LRfrom sklearn.preprocessing import StandardScalerfrom sklearn.metrics import classification_reportfrom GetDataSet import getdataset#获取数据集train_set, train_data, train_label, test_data, test_label = getdataset()#对train_data进行标准化std = StandardScaler()train_data = std.fit_transform(train_data)#进行逻辑回归二分类lg = LR(C=1.0)lg.fit(train_data, train_label)test_predict = lg.predict(test_data)print("准确率: " ,lg.score(test_data, test_label))

来源地址:https://blog.csdn.net/weixin_52430122/article/details/123619595

您可能感兴趣的文档:

--结束END--

本文标题: 基于华为云的在线拍卖数据分析

本文链接: https://lsjlt.com/news/422064.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
  • 基于华为云的在线拍卖数据分析
    实验设备与平台: MapReduce服务 MRS弹性公网IP弹性云服务器ECS基于aarch64架构的MySQL,MiniConda,Sqoop 1 数据集准备 删除csv文件中无意义的特征:...
    99+
    2023-09-30
    mysql hadoop hive 大数据
  • 基于C++的数据结构实例分析
    本篇内容介绍了“基于C++的数据结构实例分析”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!数据结构通常情况下,精心选择的数据结构可以带来更高...
    99+
    2023-07-02
  • 基于spark的数据分析怎么实现
    要基于Spark实现数据分析,通常可以按照以下步骤进行: 数据准备:首先要将需要分析的数据加载到Spark中,可以从文件系统、数...
    99+
    2024-04-02
  • Python 数据分析的科学:基于证据的见解
    数据分析已成为当今商业和研究中至关重要的工具。Python 因其易用性、强大的库生态系统和广泛的社区支持,已成为数据科学家和分析师的首选语言。基于证据的见解是数据分析的核心,而 Python 提供了一套全面的工具来提取、清理、探索和建模数...
    99+
    2024-03-12
    引言
  • 【华为云技术分享】数据库开发:MySQL Seconds_Behind_Master简要分析
    【摘要】对于mysql主备实例,seconds_behind_master是衡量master与slave之间延时的一个重要参数。通过在slave上执行"show slave status;"可以获取seconds_behind_mas...
    99+
    2017-10-30
    【华为云技术分享】数据库开发:MySQL Seconds_Behind_Master简要分析
  • portlet中关于统计在线人数的示例分析
    小编今天带大家了解portlet中关于统计在线人数的示例分析,文中知识点介绍的非常详细。觉得有帮助的朋友可以跟着小编一起浏览文章的内容,希望能够帮助更多想解决这个问题的朋友找到问题的答案,下面跟着小编一起深入学习“portlet中关于统计在...
    99+
    2023-06-03
  • python怎么应用于数据的基础统计分析
    小编给大家分享一下python怎么应用于数据的基础统计分析,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!python是什么意思Python是一种跨平台的、具有解释性、编译性、互动性和面向对象的脚本语言,其最初的设计是用于编...
    99+
    2023-06-14
  • Python中基于天气数据集XGBoost的示例分析
    这篇文章将为大家详细讲解有关Python中基于天气数据集XGBoost的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。一、XGBoostXGBoost并不是一种模型,而是一个可供用户轻松解决分类、...
    99+
    2023-06-26
  • 基于Python实现股票数据分析的可视化
    目录一、简介二、代码1、主文件2、数据库使用文件3、ui设计模块4、数据处理模块三、数据样例的展示四、效果展示一、简介 我们知道在购买股票的时候,可以使用历史数据来对当前的股票的走势...
    99+
    2024-04-02
  • 基于 Spark 的数据分析实践是怎样进行的
    今天就跟大家聊聊有关基于 Spark 的数据分析实践是怎样进行的,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。引言:Spark是在借鉴了MapReduce之上发展而来的,继承了其分布...
    99+
    2023-06-02
  • python基于OpenCV模块实现视频流数据切割为图像帧数据(流程分析)
    动态视频流数据的处理可以转化为静态图像帧的处理,这样就可以在不改动图像模型的情况下实现视频流数据的处理工作,当然视频流数据也可以采用视频的处理方法来直接处理,这里今天主要是实践一下视...
    99+
    2024-04-02
  • nodejs基于mssql模块连接sqlserver数据库的示例分析
    这篇文章给大家分享的是有关nodejs基于mssql模块连接sqlserver数据库的示例分析的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。本文实例讲述了nodejs基于mssq...
    99+
    2024-04-02
  • 基于Ajax中formData图片和数据上传的示例分析
    这篇文章主要为大家展示了“基于Ajax中formData图片和数据上传的示例分析”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“基于Ajax中formData图片...
    99+
    2024-04-02
  • 基于TableStore的海量电商订单元数据管理分析
    本篇内容介绍了“基于TableStore的海量电商订单元数据管理分析”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学...
    99+
    2024-04-02
  • 基于Python和Django的大数据分析和Git版本控制
    近年来,随着大数据技术的不断发展和普及,越来越多的企业开始注重对数据的分析和挖掘。而Python和Django作为目前最流行的编程语言和Web框架之一,已经成为大数据分析和Git版本控制的首选工具。 Python作为一种简洁、易读、易学的编...
    99+
    2023-07-11
    django 大数据 git
  • 基于MongoDB的实时数据处理与分析经验总结
    随着大数据时代的到来,数据的处理和分析变得越来越重要。在数据处理和分析领域,MongoDB作为一种流行的NoSQL数据库,被广泛应用于实时数据处理和分析中。本文将从实际经验出发,总结基于MongoDB的实时数据处理与分析的一些经验。一、数据...
    99+
    2023-11-02
    数据分析 MongoDB 实时数据处理
  • 基于MongoDB的实时数据分析与预测经验总结
    标题:基于MongoDB的实时数据分析与预测经验总结引言:随着信息技术的迅猛发展,数据分析和预测已经成为企业决策与发展的关键因素。而MongoDB作为一种非关系型数据库,对于实时数据分析和预测提供了很多便利。本文将总结基于MongoDB的实...
    99+
    2023-11-04
    预测 MongoDB 实时数据分析
  • 基于MongoDB数据库中数据类型和$type操作符的示例分析
    这篇文章将为大家详细讲解有关基于MongoDB数据库中数据类型和$type操作符的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。前面的话  本文将详细介绍Mong...
    99+
    2024-04-02
  • 基于MongoDB的实时数据流处理与分析经验总结
    随着大数据时代的到来,数据量的爆炸式增长与实时性的要求越来越高。如何进行高效的数据流处理和实时分析成为了一项重要的任务。在这个过程中,MongoDB发挥了其不可或缺的作用,成为了实时数据处理与分析的一个重要工具。本文将基于实践经验对基于Mo...
    99+
    2023-11-03
    MongoDB 实时数据流处理 数据分析经验
  • 基于MongoDB的实时数据湖构建与分析经验总结
    近年来,随着大数据技术的迅速发展,各种数据处理与分析的需求日益增长。在这个背景下,数据湖作为一种新型的数据存储和处理架构,逐渐受到了广泛关注。而MongoDB作为一种流行的非关系型数据库,具备高性能、扩展性强等优点,成为构建实时数据湖的理想...
    99+
    2023-11-03
    MongoDB 实时数据湖 构建与分析
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作