返回顶部
首页 > 资讯 > 后端开发 > Python >SVM(支持向量机)进行分类的原理和python代码----通俗易懂
  • 438
分享到

SVM(支持向量机)进行分类的原理和python代码----通俗易懂

支持向量机python分类 2023-09-27 08:09:13 438人浏览 八月长安

Python 官方文档:入门教程 => 点击学习

摘要

文章目录 一、SVM是什么?二、使用步骤三、SVM分类算法的Python代码示例总结 一、SVM是什么? SVM(支持向量机,Support Vector Machine)是一种非常流

文章目录


在这里插入图片描述

一、SVM是什么?

SVM(支持向量机,Support Vector Machine)是一种非常流行的机器学习算法,可用于二分类和多分类问题。其基本思想是通过在不同类别的样本之间构建最大化分类间隔的线性或非线性超平面来实现分类。

二、使用步骤

SVM分类的基本步骤如下:

  1. 根据训练集数据,选取最优的超平面(通常为线性或非线性),使得该平面划分出的两个类别中存在最大的间隔距离。
  2. 对新数据进行预测时,将其投射到该最优超平面上,并根据其所处的位置判定其属于哪个类别。

三、SVM分类算法的python代码示例

代码如下(示例):

from sklearn import datasetsfrom sklearn.model_selection import train_test_splitfrom sklearn.svm import SVC# 加载鸢尾花数据集iris = datasets.load_iris()# 获取特征和标签X = iris.datay = iris.target# 数据集切分X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)# SVM分类器模型训练svm_model = SVC(kernel='linear', C=1.0)svm_model.fit(X_train, y_train)# 预测测试数据集predicted_y = svm_model.predict(X_test)# 打印预测结果及模型评分print("Predicted labels: ", predicted_y)print("Accuracy score: ", svm_model.score(X_test, y_test))

总结

以上代码中,我们使用鸢尾花数据集进行SVM分类器的训练和测试。首先,我们通过调用Scikit-learn库中的加载函数获取该数据集并将其分成特征和标签两部分。然后,我们将整个数据集划分为训练集和测试集,并使用SVM算法对训练数据集进行拟合得到模型。最后,我们使用该模型预测测试集中的目标分类,并打印出预测结果及模型精度得分。在实际应用中,我们需要根据不同的场景和问题选择最适合的SVM变量和核函数类型(例如线性、多项式或径向基函数等)。

来源地址:https://blog.csdn.net/qlkaicx/article/details/130471177

--结束END--

本文标题: SVM(支持向量机)进行分类的原理和python代码----通俗易懂

本文链接: https://lsjlt.com/news/419312.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作