返回顶部
首页 > 资讯 > 数据库 >sql 行转列 case when (简洁版) —— group by 行与行比较【mysql】【全网最全】
  • 809
分享到

sql 行转列 case when (简洁版) —— group by 行与行比较【mysql】【全网最全】

行转列sqlgroup比较casewhen 2023-09-26 05:09:51 809人浏览 薄情痞子
摘要

目录 group by 搭配 max(case when..then..end) as field 一、需求 二、准备工作 1.建表  2.数据 3.查询结果 三、sql写法 1.0版本 2.0版本 3.0版本 之前写了一版使用 g

目录

group by 搭配 max(case when..then..end) as field

一、需求

二、准备工作

1.建表

 2.数据

3.查询结果

三、sql写法

1.0版本

2.0版本

3.0版本


之前写了一版使用 group by 搭配 case when 来实现行转列,但过于复杂了,今天写一版简洁的

mysql 行转列 case when_globalcoding的博客-CSDN博客

group by 搭配 max(case when..then..end) as field

格式形如:

select max(case when..then..end) as field1 from t1 group by xxx

一、需求

        目前有厂区每天的能源数据,数据来源分为两种类型:定时任务从大数据数据库里每5分钟取一次,input_type为 auto。人工手录,input_type为 input(因为有时系统出问题,数据丢失)。

        现在想将每个厂区按照每天来统计当日总量,但需要区分input_type。input_type是同一类型的相加,即auto的加一起,input的加一起。在一天内,如果既有input和auto的数据,则使用input的数据,如果只有auto的数据,则使用auto的数据。

        以下就以厂区t1来作为案例,有6天的数据。为了简化,每天只筛选部分数据。(原数据每个厂区每个测点每天有288条数据。)

二、准备工作

1.建表

CREATE TABLE `energy_data` (  `id` varchar(64) NOT NULL ,  `energy_type` varchar(64) NOT NULL COMMENT '能源类型',  `factory` varchar(64) NOT NULL COMMENT '厂区',  `start_time` datetime DEFAULT NULL COMMENT '开始时间',  `end_time` datetime DEFAULT NULL COMMENT '结束时间',  `value` decimal(20,5) DEFAULT NULL COMMENT '消耗值',  `input_type` varchar(20) DEFAULT NULL COMMENT '落库方式',  `update_date` datetime DEFAULT NULL COMMENT '修改时间')comment '能源数据'

 2.数据

INSERT INTO energy_data(id,energy_type, factory,  start_time, end_time, value, input_type, update_date)VALUES('1673669924273856513','1', 't1', '2023-06-01 00:00:00', '2023-06-01 00:15:00', 15.23152, 'input',  '2023-06-05 01:15:02'),('1673669924319993858','1', 't1', '2023-06-02 00:15:00', '2023-06-02 00:30:00', 16.23152, 'input',  '2023-06-05 01:15:02'),('1673669924319993859','1', 't1', '2023-06-02 00:30:00', '2023-06-02 00:45:00', 17.23152, 'auto',  '2023-06-05 00:15:02'),('1673669924319993860','1', 't1', '2023-06-03 00:00:00', '2023-06-03 00:15:00', 18.23152, 'auto',  '2023-06-05 01:15:02'),('1673669924319993861','1', 't1', '2023-06-03 00:15:00', '2023-06-03 00:30:00', 19.23152, 'input',  '2023-06-05 01:15:02'),('1673669924319993862','1', 't1', '2023-06-04 00:00:00', '2023-06-04 00:15:00', 20.23152, 'auto',  '2023-06-05 01:15:02'),('1673669924319993863','1', 't1', '2023-06-05 00:00:00', '2023-06-05 00:15:00', 21.23152, 'auto',  '2023-06-05 01:15:02'),('1673669924319993864','1', 't1', '2023-06-05 00:15:00', '2023-06-05 00:30:00', 22.23152, 'auto',  '2023-06-05 01:15:02'),('1673669924319993865','1', 't1', '2023-06-06 00:00:00', '2023-06-06 00:15:00', 15.23152, 'auto',  '2023-06-05 01:15:02');

3.查询结果

id                 |energy_type|factory|start_time         |end_time           |value   |input_type|update_date        |-------------------+-----------+-------+-------------------+-------------------+--------+----------+-------------------+1673669924273856513|1          |t1     |2023-06-01 00:00:00|2023-06-01 00:15:00|15.23152|input     |2023-06-05 01:15:02|1673669924319993858|1          |t1     |2023-06-02 00:15:00|2023-06-02 00:30:00|16.23152|input     |2023-06-05 01:15:02|1673669924319993859|1          |t1     |2023-06-02 00:30:00|2023-06-02 00:45:00|17.23152|auto      |2023-06-05 00:15:02|1673669924319993860|1          |t1     |2023-06-03 00:00:00|2023-06-03 00:15:00|18.23152|auto      |2023-06-05 01:15:02|1673669924319993861|1          |t1     |2023-06-03 00:15:00|2023-06-03 00:30:00|19.23152|input     |2023-06-05 01:15:02|1673669924319993862|1          |t1     |2023-06-04 00:00:00|2023-06-04 00:15:00|20.23152|auto      |2023-06-05 01:15:02|1673669924319993863|1          |t1     |2023-06-05 00:00:00|2023-06-05 00:15:00|21.23152|auto      |2023-06-05 01:15:02|1673669924319993864|1          |t1     |2023-06-05 00:15:00|2023-06-05 00:30:00|22.23152|auto      |2023-06-05 01:15:02|1673669924319993865|1          |t1     |2023-06-06 00:00:00|2023-06-06 00:15:00|15.23152|auto      |2023-06-05 01:15:02|

三、sql写法

1.0版本

先计算各厂区每日的总量。input的相加,auto的相加。 

这时,各厂区每日的数据因为input_type的缘故,有的当日数据会分为auto和input。

sql如下 :

select factory,DATE_FORMAT(start_time,'%Y-%m-%d')as start_date,input_type,sum(value)as valuefrom energy_data t1 group by factory,DATE_FORMAT(start_time,'%Y-%m-%d'),input_type

结果为: 

factory|start_date|input_type|value   |-------+----------+----------+--------+t1     |2023-06-01|input     |15.23152|t1     |2023-06-02|auto      |17.23152|t1     |2023-06-02|input     |16.23152|t1     |2023-06-03|auto      |18.23152|t1     |2023-06-03|input     |19.23152|t1     |2023-06-04|auto      |20.23152|t1     |2023-06-05|auto      |43.46304|t1     |2023-06-06|auto      |15.23152|

2.0版本

我们现在需要对 input 和 auto 做个筛选。当日数据如果有input的,就使用input的,如果没有input的,就使用auto。

在1.0的基础上,使用 group by 搭配 max(case when) 来行转列。

行专列的目的是将各厂区当日数据合并为一行

sql如下: 

selectfactory,start_date,max(case when input_type='input' then value end) as input_value,max(case when input_type='auto' then value end) as auto_valuefrom(    select factory,DATE_FORMAT(start_time,'%Y-%m-%d')as start_date,input_type,sum(value) as value    from energy_data t1 group by factory,DATE_FORMAT(start_time,'%Y-%m-%d'),input_type) t2group by factory,start_date

结果为: 

factory|start_date|input_value|auto_value|-------+----------+-----------+----------+t1     |2023-06-01|   15.23152|          |t1     |2023-06-02|   16.23152|  17.23152|t1     |2023-06-03|   19.23152|  18.23152|t1     |2023-06-04|           |  20.23152|t1     |2023-06-05|           |  43.46304|t1     |2023-06-06|           |  15.23152|

3.0版本

现在只需要将有值的字段,作为 value 返回即可。

在2.0基础上,使用 coalesce() 函数。

由于当日数据已经转成一行,input和auto已经转成字段,我们只需要挑选需要的那个字段的值即可。coalesce(f1,f2,f3...)函数刚好满足这个需求,f1如果不为空,就返回f1,f1如果为空,就看f2,f2如果不为空,就返回f2,以此类推。简单一点说就是,f1如果为空,就返回f2,f2如果为空,就返回f3。

sql如下:

selectfactory,start_date,COALESCE(max(case when input_type='input' then value end),max(case when input_type='auto' then value end),0) as valuefrom(    select factory,DATE_FORMAT(start_time,'%Y-%m-%d')as start_date,input_type,sum(value) as value    from energy_data t1 group by factory,DATE_FORMAT(start_time,'%Y-%m-%d'),input_type) t2group by factory,start_date

 结果为:

factory|start_date|value   |-------+----------+--------+t1     |2023-06-01|15.23152|t1     |2023-06-02|16.23152|t1     |2023-06-03|19.23152|t1     |2023-06-04|20.23152|t1     |2023-06-05|43.46304|t1     |2023-06-06|15.23152|

以上sql为本人亲写亲测,请尽情食用。

======================分界线========================= 

以下为紫薯布丁 

CREATE TABLE `energy_data` (
  `id` varchar(64) NOT NULL ,
  `energy_type` varchar(64) NOT NULL COMMENT '能源类型',
  `factory` varchar(64) NOT NULL COMMENT '厂区',
  `start_time` datetime DEFAULT NULL COMMENT '开始时间',
  `end_time` datetime DEFAULT NULL COMMENT '结束时间',
  `value` decimal(20,5) DEFAULT NULL COMMENT '消耗值',
  `input_type` varchar(20) DEFAULT NULL COMMENT '落库方式',
  `update_date` datetime DEFAULT NULL COMMENT '修改时间'
)comment '能源数据'

INSERT INTO energy_data(id,energy_type, factory,  start_time, end_time, value, input_type, update_date)VALUES
('1673669924273856513','1', 't1', '2023-06-01 00:00:00', '2023-06-01 00:15:00', 15.23152, 'input',  '2023-06-05 01:15:02'),
('1673669924319993858','1', 't1', '2023-06-02 00:15:00', '2023-06-02 00:30:00', 16.23152, 'input',  '2023-06-05 01:15:02'),
('1673669924319993859','1', 't1', '2023-06-02 00:30:00', '2023-06-02 00:45:00', 17.23152, 'auto',  '2023-06-05 00:15:02'),
('1673669924319993860','1', 't1', '2023-06-03 00:00:00', '2023-06-03 00:15:00', 18.23152, 'auto',  '2023-06-05 01:15:02'),
('1673669924319993861','1', 't1', '2023-06-03 00:15:00', '2023-06-03 00:30:00', 19.23152, 'input',  '2023-06-05 01:15:02'),
('1673669924319993862','1', 't1', '2023-06-04 00:00:00', '2023-06-04 00:15:00', 20.23152, 'auto',  '2023-06-05 01:15:02'),
('1673669924319993863','1', 't1', '2023-06-05 00:00:00', '2023-06-05 00:15:00', 21.23152, 'auto',  '2023-06-05 01:15:02'),
('1673669924319993864','1', 't1', '2023-06-05 00:15:00', '2023-06-05 00:30:00', 22.23152, 'auto',  '2023-06-05 01:15:02'),
('1673669924319993865','1', 't1', '2023-06-06 00:00:00', '2023-06-06 00:15:00', 15.23152, 'auto',  '2023-06-05 01:15:02');

id                 |energy_type|factory|start_time         |end_time           |value   |input_type|update_date        |
-------------------+-----------+-------+-------------------+-------------------+--------+----------+-------------------+
1673669924273856513|1          |t1     |2023-06-01 00:00:00|2023-06-01 00:15:00|15.23152|input     |2023-06-05 01:15:02|
1673669924319993858|1          |t1     |2023-06-02 00:15:00|2023-06-02 00:30:00|16.23152|input     |2023-06-05 01:15:02|
1673669924319993859|1          |t1     |2023-06-02 00:30:00|2023-06-02 00:45:00|17.23152|auto      |2023-06-05 00:15:02|
1673669924319993860|1          |t1     |2023-06-03 00:00:00|2023-06-03 00:15:00|18.23152|auto      |2023-06-05 01:15:02|
1673669924319993861|1          |t1     |2023-06-03 00:15:00|2023-06-03 00:30:00|19.23152|input     |2023-06-05 01:15:02|
1673669924319993862|1          |t1     |2023-06-04 00:00:00|2023-06-04 00:15:00|20.23152|auto      |2023-06-05 01:15:02|
1673669924319993863|1          |t1     |2023-06-05 00:00:00|2023-06-05 00:15:00|21.23152|auto      |2023-06-05 01:15:02|
1673669924319993864|1          |t1     |2023-06-05 00:15:00|2023-06-05 00:30:00|22.23152|auto      |2023-06-05 01:15:02|
1673669924319993865|1          |t1     |2023-06-06 00:00:00|2023-06-06 00:15:00|15.23152|auto      |2023-06-05 01:15:02|

select factory,DATE_FORMAT(start_time,'%Y-%m-%d')as start_date,input_type,sum(value)as value
from energy_data t1 group by factory,DATE_FORMAT(start_time,'%Y-%m-%d'),input_type

factory|start_date|input_type|value   |
-------+----------+----------+--------+
t1     |2023-06-01|input     |15.23152|
t1     |2023-06-02|auto      |17.23152|
t1     |2023-06-02|input     |16.23152|
t1     |2023-06-03|auto      |18.23152|
t1     |2023-06-03|input     |19.23152|
t1     |2023-06-04|auto      |20.23152|
t1     |2023-06-05|auto      |43.46304|
t1     |2023-06-06|auto      |15.23152|

select
factory,start_date,
max(case when input_type='input' then value end) as input_value,
max(case when input_type='auto' then value end) as auto_value

from(
    select factory,DATE_FORMAT(start_time,'%Y-%m-%d')as start_date,input_type,sum(value) as value
    from energy_data t1 group by factory,DATE_FORMAT(start_time,'%Y-%m-%d'),input_type
) t2
group by factory,start_date

factory|start_date|input_value|auto_value|
-------+----------+-----------+----------+
t1     |2023-06-01|   15.23152|          |
t1     |2023-06-02|   16.23152|  17.23152|
t1     |2023-06-03|   19.23152|  18.23152|
t1     |2023-06-04|           |  20.23152|
t1     |2023-06-05|           |  43.46304|
t1     |2023-06-06|           |  15.23152|

select
factory,start_date,
COALESCE(max(case when input_type='input' then value end),max(case when input_type='auto' then value end),0) as value

from(
    select factory,DATE_FORMAT(start_time,'%Y-%m-%d')as start_date,input_type,sum(value) as value
    from energy_data t1 group by factory,DATE_FORMAT(start_time,'%Y-%m-%d'),input_type
) t2
group by factory,start_date

factory|start_date|value   |
-------+----------+--------+
t1     |2023-06-01|15.23152|
t1     |2023-06-02|16.23152|
t1     |2023-06-03|19.23152|
t1     |2023-06-04|20.23152|
t1     |2023-06-05|43.46304|
t1     |2023-06-06|15.23152|

来源地址:https://blog.csdn.net/u011149152/article/details/131442054

您可能感兴趣的文档:

--结束END--

本文标题: sql 行转列 case when (简洁版) —— group by 行与行比较【mysql】【全网最全】

本文链接: https://lsjlt.com/news/418119.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作