文章目录 前言知识积累CDC简介CDC的种类常见的CDC方案比较 Springboot接入Flink CDC环境准备项目搭建 本地运行集群运行将项目打包将包传入集群启动远程将包部署
前面的博文我们分享了大数据分布式流处理计算框架Flink和其基础环境的搭建,相信各位看官都已经搭建好了自己的运行环境。那么,今天就来实战一把使用flink CDC同步Mysql数据导elasticsearch。
CDC 的全称是 Change Data Capture(变更数据捕获技术) ,在广义的概念上,只要是能捕获数据变更的技术,我们都可以称之为 CDC 。目前通常描述的 CDC 技术主要面向数据库的变更,是一种用于捕获数据库中数据变更的技术。
CDC 的技术方案非常多,目前业界主流的实现机制可以分为两种:
基于查询的 CDC:
◆离线调度查询作业,批处理。把一张表同步到其他系统,每次通过查询去获取表中最新的数据;
◆无法保障数据一致性,查的过程中有可能数据已经发生了多次变更;
◆不保障实时性,基于离线调度存在天然的延迟。
基于日志的 CDC:
◆实时消费日志,流处理,例如 mysql 的 binlog 日志完整记录了数据库中的变更,可以把 binlog 文件当作流的数据源;
◆保障数据一致性,因为 binlog 文件包含了所有历史变更明细;
◆保障实时性,因为类似 binlog 的日志文件是可以流式消费的,提供的是实时数据。
由于Flink官方提供了Java、Scala、python语言接口用以开发Flink应用程序,故我们可以直接用Maven引入Flink依赖进行功能实现。
springBoot 2.4.3
2、Flink 1.13.6
3、Scala 2.11
4、Maven 3.6.3
5、Java 8
6、mysql 8
7、es 7
Springboot、Flink、Scala版本一定要相匹配,也可以严格按照本博客进行配置。
注意:
如果只是本机测试玩玩,Maven依赖已经整合计算环境,不用额外搭建Flink环境;如果需要部署到Flink集群则需要额外搭建Flink集群。另外Scala 版本只是用于依赖选择,不用关心Scala环境。
1、引入Flink CDC Maven依赖
pom.xml
org.springframework.boot spring-boot-starter-parent 2.4.3 com.example flink-demo 0.0.1-SNAPSHOT flink-demo Demo project for Spring Boot 8 UTF-8 UTF-8 1.13.6 org.springframework.boot spring-boot-starter-WEB mysql mysql-connector-java 8.0.23 com.ververica flink-connector-mysql-cdc 2.1.0 org.apache.flink flink-shaded-guava org.apache.flink flink-connector-elasticsearch7_2.11 ${flink.version} org.apache.flink flink-JSON ${flink.version} org.apache.flink flink-table-api-java-bridge_2.11 ${flink.version} org.apache.flink flink-table-planner_2.11 ${flink.version} org.apache.flink flink-table-planner-blink_2.11 ${flink.version} org.apache.flink flink-clients_2.11 ${flink.version} org.apache.flink flink-java ${flink.version} org.apache.flink flink-streaming-java_2.11 ${flink.version} org.springframework.boot spring-boot-starter-test test
2、创建测试数据库表users
users表结构
CREATE TABLE `users` ( `id` bigint NOT NULL AUTO_INCREMENT COMMENT 'ID', `name` varchar(50) NOT NULL COMMENT '名称', `birthday` timestamp NULL DEFAULT NULL COMMENT '生日', `ts` timestamp NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间', PRIMARY KEY (`id`)) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci COMMENT='用户';
3、es索引操作
es操作命令
es索引会自动创建
#设置es分片与副本curl -X PUT "10.10.22.174:9200/users" -u elastic:VaHcSC3mOFfovLWTqW6E -H 'Content-Type: application/json' -d'{ "settings" : { "number_of_shards" : 3, "number_of_replicas" : 2 }}'#查询index下全部数据 curl -X GET "Http://10.10.22.174:9200/users/_search" -u elastic:VaHcSC3mOFfovLWTqW6E -H 'Content-Type: application/json' #删除indexcurl -X DELETE "10.10.22.174:9200/users" -u elastic:VaHcSC3mOFfovLWTqW6E
@SpringBootTestclass FlinkDemoApplicationTests { @Test void flinkCDC() throws Exception{ EnvironmentSettings fsSettings = EnvironmentSettings.newInstance() //.useBlinkPlanner() .inStreamingMode() .build(); StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setParallelism(1); StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env,fsSettings); tableEnv.getConfig().setSqlDialect(SqlDialect.DEFAULT); // 数据源表 String sourceDDL = "CREATE TABLE users (\n" + " id BIGINT PRIMARY KEY NOT ENFORCED ,\n" + " name STRING,\n" + " birthday TIMESTAMP(3),\n" + " ts TIMESTAMP(3)\n" + ") WITH (\n" + " 'connector' = 'mysql-cdc',\n" + " 'hostname' = '10.10.10.202',\n" + " 'port' = '6456',\n" + " 'username' = 'root',\n" + " 'passWord' = 'MyNewPass2021',\n" + " 'server-time-zone' = 'Asia/Shanghai',\n" + " 'database-name' = 'cdc',\n" + " 'table-name' = 'users'\n" + " )"; // 输出目标表 String sinkDDL = "CREATE TABLE users_sink_es\n" + "(\n" + " id BIGINT PRIMARY KEY NOT ENFORCED,\n" + " name STRING,\n" + " birthday TIMESTAMP(3),\n" + " ts TIMESTAMP(3)\n" + ") \n" + "WITH (\n" + " 'connector' = 'elasticsearch-7',\n" + " 'hosts' = 'http://10.10.22.174:9200',\n" + " 'index' = 'users',\n" + " 'username' = 'elastic',\n" + " 'password' = 'VaHcSC3mOFfovLWTqW6E'\n" + ")"; // 简单的聚合处理 String transfORMSQL = "INSERT INTO users_sink_es SELECT * FROM users"; tableEnv.executeSql(sourceDDL); tableEnv.executeSql(sinkDDL); TableResult result = tableEnv.executeSql(transformSQL); result.print(); env.execute("mysql-to-es"); }
请求es用户索引发现并无数据:
[root@bluejingyu-1 ~]# curl -X GET “http://10.10.22.174:9200/users/_search” -u elastic:VaHcSC3mOFfovLWTqW6E -H ‘Content-Type: application/json’
{“took”:0,“timed_out”:false,“_shards”:{“total”:3,“successful”:3,“skipped”:0,“failed”:0},“hits”:{“total”:{“value”:0,“relation”:“eq”},“max_score”:null,“hits”:[]}}
操作mysql数据库新增多条数据
5 senfel 2023-08-30 15:02:28 2023-08-30 15:02:36
6 sebfel2 2023-08-30 15:02:43 2023-08-30 15:02:47
再次获取es用户索引查看数据
[root@bluejingyu-1 ~]# curl -X GET “http://10.10.22.174:9200/users/_search” -u elastic:VaHcSC3mOFfovLWTqW6E -H ‘Content-Type: application/json’
{“took”:67,“timed_out”:false,“_shards”:{“total”:3,“successful”:3,“skipped”:0,“failed”:0},“hits”:{“total”:{“value”:2,“relation”:“eq”},“max_score”:1.0,“hits”:[{“_index”:“users”,“_type”:“_doc”,“_id”:“5”,“_score”:1.0,“_source”:{“id”:5,“name”:“senfel”,“birthday”:“2023-08-30 15:02:28”,“ts”:“2023-08-30 15:02:36”}},{“_index”:“users”,“_type”:“_doc”,“_id”:“6”,“_score”:1.0,“_source”:{“id”:6,“name”:“sebfel2”,“birthday”:“2023-08-30 15:02:43”,“ts”:“2023-08-30 15:02:47”}}]}}
由上测试结果可知本地运行无异常。
项目树:
1、创建集群运行代码逻辑
public class FlinkMysqlToEs { public static void main(String[] args) throws Exception { EnvironmentSettings fsSettings = EnvironmentSettings.newInstance() //.useBlinkPlanner() .inStreamingMode() .build(); StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setParallelism(1); StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env,fsSettings); tableEnv.getConfig().setSqlDialect(SqlDialect.DEFAULT); // 数据源表 String sourceDDL = "CREATE TABLE users (\n" + " id BIGINT PRIMARY KEY NOT ENFORCED ,\n" + " name STRING,\n" + " birthday TIMESTAMP(3),\n" + " ts TIMESTAMP(3)\n" + ") WITH (\n" + " 'connector' = 'mysql-cdc',\n" + " 'hostname' = '10.10.10.202',\n" + " 'port' = '6456',\n" + " 'username' = 'root',\n" + " 'password' = 'MyNewPass2021',\n" + " 'server-time-zone' = 'Asia/Shanghai',\n" + " 'database-name' = 'cdc',\n" + " 'table-name' = 'users'\n" + " )"; // 输出目标表 String sinkDDL = "CREATE TABLE users_sink_es\n" + "(\n" + " id BIGINT PRIMARY KEY NOT ENFORCED,\n" + " name STRING,\n" + " birthday TIMESTAMP(3),\n" + " ts TIMESTAMP(3)\n" + ") \n" + "WITH (\n" + " 'connector' = 'elasticsearch-7',\n" + " 'hosts' = 'http://10.10.22.174:9200',\n" + " 'index' = 'users',\n" + " 'username' = 'elastic',\n" + " 'password' = 'VaHcSC3mOFfovLWTqW6E'\n" + ")"; // 简单的聚合处理 String transformSQL = "INSERT INTO users_sink_es SELECT * FROM users"; tableEnv.executeSql(sourceDDL); tableEnv.executeSql(sinkDDL); TableResult result = tableEnv.executeSql(transformSQL); result.print(); env.execute("mysql-to-es"); }}
2、集群运行需要将Flink程序打包,不同于普通的jar包,这里必须采用shade
flink-demo org.apache.maven.plugins maven-shade-plugin 3.2.4 package shade false com.Google.code.findbugs:jsr305 org.slf4j:* log4j:* *:* module-info.class META-INF@GetMapping("/runTask")public JobID runTask() { try { // 集群信息 Configuration configuration = new Configuration(); configuration.setString(JobManagerOptions.ADDRESS, "10.10.22.91"); configuration.setInteger(JobManagerOptions.PORT, 6123); configuration.setInteger(RestOptions.PORT, 8081); RestClusterClient client = new RestClusterClient<>(configuration, StandaloneClusterId.getInstance()); //jar包存放路径,也可以直接调用hdfs中的jar File jarFile = new File("input/flink-demo.jar"); SavepointRestoreSettings savepointRestoreSettings = SavepointRestoreSettings.none(); //构建提交任务参数 PackagedProgram program = PackagedProgram .newBuilder() .setConfiguration(configuration) .setEntryPointClassName("com.example.flinkdemo.FlinkMysqlToEs") .setJarFile(jarFile) .setSavepointRestoreSettings(savepointRestoreSettings).build(); //创建任务 JobGraph jobGraph = PackagedProgramUtils.createJobGraph(program, configuration, 1, false); //提交任务 CompletableFuture result = client.submitJob(jobGraph); return result.get(); } catch (Exception e) { e.printStackTrace(); return null; }}
2、启动Springboot项目
3、postman请求
4、查看Fink集群控制台
由上图所示已将远程部署完成。
5、测试操作mysql数据库
5 senfel000 2023-08-30 15:02:28 2023-08-30 15:02:36
7 eeeee 2023-08-30 17:12:00 2023-08-30 17:12:04
8 33333 2023-08-30 17:12:08 2023-08-30 17:12:11
6、查询es用户索引
[root@bluejingyu-1 ~]# curl -X GET “http://10.10.22.174:9200/users/_search” -u elastic:VaHcSC3mOFfovLWTqW6E -H ‘Content-Type: application/json’
{“took”:766,“timed_out”:false,“_shards”:{“total”:3,“successful”:3,“skipped”:0,“failed”:0},“hits”:{“total”:{“value”:3,“relation”:“eq”},“max_score”:1.0,“hits”:[{“_index”:“users”,“_type”:“_doc”,“_id”:“5”,“_score”:1.0,“_source”:{“id”:5,“name”:“senfel000”,“birthday”:“2023-08-30 15:02:28”,“ts”:“2023-08-30 15:02:36”}},{“_index”:“users”,“_type”:“_doc”,“_id”:“7”,“_score”:1.0,“_source”:{“id”:7,“name”:“eeeee”,“birthday”:“2023-08-30 17:12:00”,“ts”:“2023-08-30 17:12:04”}},{“_index”:“users”,“_type”:“_doc”,“_id”:“8”,“_score”:1.0,“_source”:{“id”:8,“name”:“33333”,“birthday”:“2023-08-30 17:12:08”,“ts”:“2023-08-30 17:12:11”}}]}}
如上所以es中新增了两条数据;
经测试远程发布Flink Task完成。
大数据Flink CDC同步Mysql数据到ElasticSearch搭建与测试运行较为简单,对于基础的学习测试环境独立集群目前只支持单个任务部署,如果需要多个任务或者运用于生产可以采用Yarn与Job分离模式进行部署。
来源地址:https://blog.csdn.net/weixin_39970883/article/details/132707967
--结束END--
本文标题: 实战:大数据Flink CDC同步Mysql数据到ElasticSearch
本文链接: https://lsjlt.com/news/408220.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-10-23
2024-10-22
2024-10-22
2024-10-22
2024-10-22
2024-10-22
2024-10-22
2024-10-22
2024-10-22
2024-10-22
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0