返回顶部
首页 > 资讯 > 后端开发 > Python >【yolov5】将标注好的数据集进行划分(附完整可运行python代码)
  • 774
分享到

【yolov5】将标注好的数据集进行划分(附完整可运行python代码)

pythonYOLO深度学习 2023-09-02 19:09:37 774人浏览 安东尼

Python 官方文档:入门教程 => 点击学习

摘要

问题描述 准备使用yolov5训练自己的模型,自己将下载的开源数据集按照自己的要求重新标注了一下,然后现在对其进行划分。 问题分析 划分数据集主要的步骤就是,首先要将数据集打乱顺序,然后按照一定的比例

问题描述

准备使用yolov5训练自己的模型,自己将下载的开源数据集按照自己的要求重新标注了一下,然后现在对其进行划分。

问题分析

划分数据集主要的步骤就是,首先要将数据集打乱顺序,然后按照一定的比例将其分为训练集,验证集和测试集。
这里我定的比例是7:1:2。

步骤流程

1、将数据集打乱顺序

数据集有图片和标注文件,我们需要把两种文件绑定然后将其打乱顺序。
首先读取数据后,将两种文件通过zip函数绑定

each_class_image = []    each_class_label = []    for image in os.listdir(file_path):        each_class_image.append(image)    for label in os.listdir(xml_path):        each_class_label.append(label)    data=list(zip(each_class_image,each_class_label))

然后打乱顺序,再将两个列表分开

    random.shuffle(data)    each_class_image,each_class_label=zip(*data)

2、按照确定好的比例将两个列表元素分割

分别用三个列表储存一下图片和标注文件的元素

train_images = each_class_image[0:int(train_rate * total)]    val_images = each_class_image[int(train_rate * total):int((train_rate + val_rate) * total)]    test_images = each_class_image[int((train_rate + val_rate) * total):]        train_labels = each_class_label[0:int(train_rate * total)]    val_labels = each_class_label[int(train_rate * total):int((train_rate + val_rate) * total)]    test_labels = each_class_label[int((train_rate + val_rate) * total):]

3、在本地生成文件夹,将划分好的数据集分别保存

这样就保存好了。

    for image in train_images:        #print(image)        old_path = file_path + '/' + image        new_path1 = new_file_path + '/' + 'train' + '/' + 'images'        if not os.path.exists(new_path1):            os.makedirs(new_path1)        new_path = new_path1 + '/' + image        shutil.copy(old_path, new_path)    for label in train_labels:        #print(label)        old_path = xml_path + '/' + label        new_path1 = new_file_path + '/' + 'train' + '/' + 'labels'        if not os.path.exists(new_path1):            os.makedirs(new_path1)        new_path = new_path1 + '/' + label        shutil.copy(old_path, new_path)    for image in val_images:        old_path = file_path + '/' + image        new_path1 = new_file_path + '/' + 'val' + '/' + 'images'        if not os.path.exists(new_path1):            os.makedirs(new_path1)        new_path = new_path1 + '/' + image        shutil.copy(old_path, new_path)    for label in val_labels:        old_path = xml_path + '/' + label        new_path1 = new_file_path + '/' + 'val' + '/' + 'labels'        if not os.path.exists(new_path1):            os.makedirs(new_path1)        new_path = new_path1 + '/' + label        shutil.copy(old_path, new_path)    for image in test_images:        old_path = file_path + '/' + image        new_path1 = new_file_path + '/' + 'test' + '/' + 'images'        if not os.path.exists(new_path1):            os.makedirs(new_path1)        new_path = new_path1 + '/' + image        shutil.copy(old_path, new_path)    for label in test_labels:        old_path = xml_path + '/' + label        new_path1 = new_file_path + '/' + 'test' + '/' + 'labels'        if not os.path.exists(new_path1):            os.makedirs(new_path1)        new_path = new_path1 + '/' + label        shutil.copy(old_path, new_path)

运行结果展示

直接运行单个python文件即可。
在这里插入图片描述
运行完毕
去本地查看
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
图片和标注文件乱序,且一一对应。

完整代码分享

import osimport shutilimport randomrandom.seed(0)def split_data(file_path,xml_path, new_file_path, train_rate, val_rate, test_rate):    each_class_image = []    each_class_label = []    for image in os.listdir(file_path):        each_class_image.append(image)    for label in os.listdir(xml_path):        each_class_label.append(label)    data=list(zip(each_class_image,each_class_label))    total = len(each_class_image)    random.shuffle(data)    each_class_image,each_class_label=zip(*data)    train_images = each_class_image[0:int(train_rate * total)]    val_images = each_class_image[int(train_rate * total):int((train_rate + val_rate) * total)]    test_images = each_class_image[int((train_rate + val_rate) * total):]    train_labels = each_class_label[0:int(train_rate * total)]    val_labels = each_class_label[int(train_rate * total):int((train_rate + val_rate) * total)]    test_labels = each_class_label[int((train_rate + val_rate) * total):]    for image in train_images:        print(image)        old_path = file_path + '/' + image        new_path1 = new_file_path + '/' + 'train' + '/' + 'images'        if not os.path.exists(new_path1):            os.makedirs(new_path1)        new_path = new_path1 + '/' + image        shutil.copy(old_path, new_path)    for label in train_labels:        print(label)        old_path = xml_path + '/' + label        new_path1 = new_file_path + '/' + 'train' + '/' + 'labels'        if not os.path.exists(new_path1):            os.makedirs(new_path1)        new_path = new_path1 + '/' + label        shutil.copy(old_path, new_path)    for image in val_images:        old_path = file_path + '/' + image        new_path1 = new_file_path + '/' + 'val' + '/' + 'images'        if not os.path.exists(new_path1):            os.makedirs(new_path1)        new_path = new_path1 + '/' + image        shutil.copy(old_path, new_path)    for label in val_labels:        old_path = xml_path + '/' + label        new_path1 = new_file_path + '/' + 'val' + '/' + 'labels'        if not os.path.exists(new_path1):            os.makedirs(new_path1)        new_path = new_path1 + '/' + label        shutil.copy(old_path, new_path)    for image in test_images:        old_path = file_path + '/' + image        new_path1 = new_file_path + '/' + 'test' + '/' + 'images'        if not os.path.exists(new_path1):            os.makedirs(new_path1)        new_path = new_path1 + '/' + image        shutil.copy(old_path, new_path)    for label in test_labels:        old_path = xml_path + '/' + label        new_path1 = new_file_path + '/' + 'test' + '/' + 'labels'        if not os.path.exists(new_path1):            os.makedirs(new_path1)        new_path = new_path1 + '/' + label        shutil.copy(old_path, new_path)if __name__ == '__main__':    file_path = "D:/Files/dataSet/drone_images"    xml_path = 'D:/Files/dataSet/drone_labels'    new_file_path = "D:/Files/dataSet/droneData"    split_data(file_path,xml_path, new_file_path, train_rate=0.7, val_rate=0.1, test_rate=0.2)

来源地址:https://blog.csdn.net/freezing_00/article/details/129097738

--结束END--

本文标题: 【yolov5】将标注好的数据集进行划分(附完整可运行python代码)

本文链接: https://lsjlt.com/news/391326.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作