Python 官方文档:入门教程 => 点击学习
python论文复现:《基于稀疏指标的优化变分模态分解方法》 信号分解方法中,虽然变分模态分解(Variational Mode Decomposition, VMD)有严格的数学推导,能有效抑制
信号分解方法中,虽然变分模态分解(Variational Mode Decomposition, VMD)有严格的数学推导,能有效抑制端点效应、模态混叠等问题,但其分解模态数需预设。然而实际工程中,真实信号的频谱较为嘈杂且频带个数较难确定,一般观察分析具体信号的频谱图设置合理的模态数。
相比人工选取方法,自适应选取方法通常定义分解好坏的指标,进一步确定该指标下的最佳模态数。考虑到《基于稀疏指标的优化变分模态分解方法》从IMF频带稀疏性(VMD分解的初衷)的角度寻优,且稀疏指标有严格的理论支撑《信号的稀疏性分析》,故本文对其进行复现。
VMD 假定所有分量都是集中在各自中心频率附近的窄带信号,根据分量窄带条件建立约束优化问题,从而估计信号分量的中心频率以及重构相应分量。具体原理不再赘述,由于之前有粉丝不知道我用的什么代码,故在此公开,可单独放在vmdpy.py文件,后面的主程序Auto_VMD.py会调用:
import numpy as npdef VMD(f, alpha, tau, K, DC, init, tol): """ u,u_hat,omega = VMD(f, alpha, tau, K, DC, init, tol) Variational mode decomposition Python implementation by Vinícius Rezende Carvalho - vrcarva@gmail.com code based on Dominique Zosso's MATLAB code, available at: https://www.mathworks.com/matlabcentral/fileexchange/44765-variational-mode-decomposition Original paper: DraGomiretskiy, K. and Zosso, D. (2014) ‘Variational Mode Decomposition’, IEEE Transactions on Signal Processing, 62(3), pp. 531–544. doi: 10.1109/TSP.2013.2288675. Input and Parameters: --------------------- f - the time domain signal (1D) to be decomposed alpha - the balancing parameter of the data-fidelity constraint tau - time-step of the dual ascent ( pick 0 for noise-slack ) K - the number of modes to be recovered DC - true if the first mode is put and kept at DC (0-freq) init - 0 = all omegas start at 0 1 = all omegas start unifORMly distributed 2 = all omegas initialized randomly tol - tolerance of convergence criterion; typically around 1e-6 Output: ------- u - the collection of decomposed modes u_hat - spectra of the modes omega - estimated mode center-frequencies """ if len(f)%2: f = f[:-1] # Period and sampling frequency of input signal fs = 1./len(f) ltemp = len(f)//2 fMirr = np.append(np.flip(f[:ltemp],axis = 0),f) fMirr = np.append(fMirr,np.flip(f[-ltemp:],axis = 0)) # Time Domain 0 to T (of mirrored signal) T = len(fMirr) t = np.arange(1,T+1)/T # Spectral Domain discretization freqs = t-0.5-(1/T) # Maximum number of iterations (if not converged yet, then it won't anyway) Niter = 500 # For future generalizations: individual alpha for each mode Alpha = alpha*np.ones(K) # Construct and center f_hat f_hat = np.fft.fftshift((np.fft.fft(fMirr))) f_hat_plus = np.copy(f_hat) #copy f_hat f_hat_plus[:T//2] = 0 # Initialization of omega_k omega_plus = np.zeros([Niter, K]) if init == 1: for i in range(K): omega_plus[0,i] = (0.5/K)*(i) elif init == 2: omega_plus[0,:] = np.sort(np.exp(np.log(fs) + (np.log(0.5)-np.log(fs))*np.random.rand(1,K))) else: omega_plus[0,:] = 0 # if DC mode imposed, set its omega to 0 if DC: omega_plus[0,0] = 0 # start with empty dual variables lambda_hat = np.zeros([Niter, len(freqs)], dtype = complex) # other inits uDiff = tol+np.spacing(1) # update step n = 0 # loop counter sum_uk = 0 # accumulator # matrix keeping track of every iterant // could be discarded for mem u_hat_plus = np.zeros([Niter, len(freqs), K],dtype=complex) #*** Main loop for iterative updates*** while ( uDiff > tol and n < Niter-1 ): # not converged and below iterations limit # update first mode accumulator k = 0 sum_uk = u_hat_plus[n,:,K-1] + sum_uk - u_hat_plus[n,:,0] # update spectrum of first mode through Wiener filter of residuals u_hat_plus[n+1,:,k] = (f_hat_plus - sum_uk - lambda_hat[n,:]/2)/(1.+Alpha[k]*(freqs - omega_plus[n,k])**2) # update first omega if not held at 0 if not(DC): omega_plus[n+1,k] = np.dot(freqs[T//2:T],(abs(u_hat_plus[n+1, T//2:T, k])**2))/np.sum(abs(u_hat_plus[n+1,T//2:T,k])**2) # update of any other mode for k in np.arange(1,K): #accumulator sum_uk = u_hat_plus[n+1,:,k-1] + sum_uk - u_hat_plus[n,:,k] # mode spectrum u_hat_plus[n+1,:,k] = (f_hat_plus - sum_uk - lambda_hat[n,:]/2)/(1+Alpha[k]*(freqs - omega_plus[n,k])**2) # center frequencies omega_plus[n+1,k] = np.dot(freqs[T//2:T],(abs(u_hat_plus[n+1, T//2:T, k])**2))/np.sum(abs(u_hat_plus[n+1,T//2:T,k])**2) # Dual ascent lambda_hat[n+1,:] = lambda_hat[n,:] + tau*(np.sum(u_hat_plus[n+1,:,:],axis = 1) - f_hat_plus) # loop counter n = n+1 # converged yet? uDiff = np.spacing(1) for i in range(K): uDiff = uDiff + (1/T)*np.dot((u_hat_plus[n,:,i]-u_hat_plus[n-1,:,i]),np.conj((u_hat_plus[n,:,i]-u_hat_plus[n-1,:,i]))) uDiff = np.abs(uDiff) #Postprocessing and cleanup #discard empty space if converged early Niter = np.min([Niter,n]) omega = omega_plus[:Niter,:] idxs = np.flip(np.arange(1,T//2+1),axis = 0) # Signal reconstruction u_hat = np.zeros([T, K],dtype = complex) u_hat[T//2:T,:] = u_hat_plus[Niter-1,T//2:T,:] u_hat[idxs,:] = np.conj(u_hat_plus[Niter-1,T//2:T,:]) u_hat[0,:] = np.conj(u_hat[-1,:]) u = np.zeros([K,len(t)]) for k in range(K): u[k,:] = np.real(np.fft.ifft(np.fft.ifftshift(u_hat[:,k]))) # remove mirror part u = u[:,T//4:3*T//4] # recompute spectrum u_hat = np.zeros([u.shape[1],K],dtype = complex) for k in range(K): u_hat[:,k]=np.fft.fftshift(np.fft.fft(u[k,:])) return u, u_hat, omega
论文作者是在每个IMF的边际谱上计算稀疏化指标,而边际谱是希尔伯特谱在时间维度上的积分。笔者首先将求边际谱的代码函数化,由于需要进行希尔伯特变换,本代码需要调用PyEMD与scipy库。
h(z)= ∫ 0 T H(t,f)dt h(z) = \int_0^T H(t,f)dt\ h(z)=∫0TH(t,f)dt
from PyEMD import Visualisationfrom scipy.signal import hilbert#求窄带信号的边际谱def mspect(Fs,signal,draw=1): fmin,fmax=0,Fs/2 size=len(signal)//2 df=(fmax-fmin)/(size-1) t=np.arange(0,len(signal)/Fs,1/Fs) vis = Visualisation() #希尔伯特变化 signal=signal.reshape(1,-1) #求瞬时频率 freqs = abs(vis._calc_inst_freq(signal, t, order=False, alpha=None)) #求瞬时幅值 amp= abs(hilbert(signal)) #去掉为1的维度 freqs=np.squeeze(freqs) amp=np.squeeze(amp) result=np.zeros(size) for i,j in zip(freqs,amp): if i>=fmin and i<=fmax: result[round((i-fmin)/df)]+=j f=np.arange(fmin,size*df,df) #可视化 if draw==1: #可视化 plt.figure() plt.rcParams['font.sans-serif']='Times New Roman' plt.plot(f,result) plt.xlabel('f/HZ',fontsize=16) plt.ylabel('amplitude',fontsize=16) plt.title('Marginal Spectrum',fontsize=20) return f,result
总结论文思路如下:
1)初始化VMD参数,惩罚因子 α \alpha α为3000,拉格朗日乘子更新因子为0.01,分解模态数K为2;
2)VMD分解并计算各IMF的边际谱,计算各IMF的稀疏度(考虑了能量权值因子);
Si = max { M S i } max { max { M S 1 } ⋯ max { M S k } } {E(M S i 2 )/ [ E ( M S i ) ] 2 } {S}_{i}=\frac{\max \left\{ M{{S}_{i}} \right\}}{\max \left\{ \max \left\{ M{{S}_{1}} \right\}\cdots \max \left\{ M{{S}_{k}} \right\} \right\}}\left\{ E(MS_{i}^{2})/{{\left[ E(M{{S}_{i}}) \right]}^{2}} \right\} Si=max{max{MS1}⋯max{MSk}}max{MSi}{E(MSi2)/[E(MSi)]2}
3)取各IMF边际谱稀疏度作为该分解模态数K下的整体稀疏度;
SK = 1K ∑ i = 1 K Si {{S}_{K}}=\frac{1}{K}\sum\limits_{i=1}^{K}{{{S}_{i}}} SK=K1i=1∑KSi
4)当 SK < S K − 1 ( K > 2 ) {{S}_{K}}<{{S}_{K-1}}(K>2) SK<SK−1(K>2)时,选取最佳分解模态数为K-1,进入步骤5),反之令 K = K + 1 K=K+1 K=K+1回到步骤2)继续迭代;
5)采用最佳的分解模态数进行VMD分解。
该文在确定最佳分解模态数时是选取第一个极大值点,或者稀疏度随K单调递减时,选取第一个点2。然而,实际信号极值点可能不为最大值点,且若出现先递减后递增(稀疏度大于K=2)的情况时,该方法无法取到最佳K值。
本人对选取方法做了一点小改变,即:预设最大K值(依据信号复杂度设置,本人取10),计算K从2至最大值期间的稀疏度,取最大稀疏度对应的K值作为最佳分解模态数。主函数Auto_VMD.py具体代码如下(画时频图的代码,我之前的博文有):
from vmdpy import VMDimport matplotlib.pyplot as pltimport numpy as npfrom PyEMD import Visualisationfrom scipy.signal import hilbert#求窄带信号的边际谱def mspect(Fs,signal,draw=1): fmin,fmax=0,Fs/2 size=len(signal)//2 df=(fmax-fmin)/(size-1) t=np.arange(0,len(signal)/Fs,1/Fs) vis = Visualisation() #希尔伯特变化 signal=signal.reshape(1,-1) #求瞬时频率 freqs = abs(vis._calc_inst_freq(signal, t, order=False, alpha=None)) #求瞬时幅值 amp= abs(hilbert(signal)) #去掉为1的维度 freqs=np.squeeze(freqs) amp=np.squeeze(amp) result=np.zeros(size) for i,j in zip(freqs,amp): if i>=fmin and i<=fmax: result[round((i-fmin)/df)]+=j f=np.arange(fmin,size*df,df) #可视化 if draw==1: #可视化 plt.figure() plt.rcParams['font.sans-serif']='Times New Roman' plt.plot(f,result) plt.xlabel('f/HZ',fontsize=16) plt.ylabel('amplitude',fontsize=16) plt.title('Marginal Spectrum',fontsize=20) return f,result#基于稀疏指标自适应确定K值的VMD分解 def Auto_VMD_main(signal,Fs,draw=1,maxK=10): #vmd参数设置 alpha = 3000 # moderate bandwidth constraint 2000 tau = 0. # noise-tolerance (no strict fidelity enforcement) DC = 0 # no DC part imposed init = 1 # initialize omegas uniformly tol = 1e-7 #寻找最佳K S=[[],[]] flag,idx=-2,2 for K in range(2,maxK+1): IMFs,_,_=VMD(signal, alpha, tau, K, DC, init, tol) #分解信号 M_spect=[] max_M=[] for i in range(len(IMFs)): # _,_=fftlw(Fs,IMFs[i,:],1) _,M=mspect(Fs,IMFs[i,:],0) max_M.append(max(M)) temp=np.mean(M**2)/(np.mean(M)**2) M_spect.append(temp) max_M=max_M/max(max_M) S_index=np.mean(max_M*M_spect) if S_index>flag: flag=S_index idx=K S[0].append(K) S[1].append(S_index) #用最佳K值分解信号 IMFs, _, _ = VMD(signal, alpha, tau, idx, DC, init, tol) #可视化寻优过程与最终结果 if draw==1: plt.figure() plt.rcParams['font.sans-serif']='Times New Roman' plt.plot(S[0],S[1]) plt.scatter([idx],[flag],c='r',marker='*') plt.xlabel('K',fontsize=16) plt.ylabel('Sparse index',fontsize=16) plt.title('Optimization Process',fontsize=20) plt.figure() for i in range(len(IMFs)): plt.subplot(len(IMFs),1,i+1) plt.plot(t,IMFs[i]) if i==0: plt.rcParams['font.sans-serif']='Times New Roman' plt.title('Decomposition Signal',fontsize=14) elif i==len(IMFs)-1: plt.rcParams['font.sans-serif']='Times New Roman' plt.xlabel('Time/s') return IMFs if __name__=='__main__': #仿真信号1 Fs=6000 #采样频率 t = np.arange(0, 1.0, 1.0 / Fs) signal=np.multiply(np.sin(2*np.pi*100*t),(np.cos(2*np.pi*1000*t)+np.cos(2*np.pi*1500*t)+np.cos(2*np.pi*2000*t))) # #仿真信号2 # Fs=1000 #采样频率 # t = np.arange(0, 1.0, 1.0 / Fs) # f1,f2,f3 = 100,200,300 # signal = np.piecewise(t, [t < 1, t < 0.6, t < 0.3], # [lambda t: np.sin(2 * np.pi * f1 * t), lambda t: np.sin(2 * np.pi * f2 * t), # lambda t: np.sin(2 * np.pi * f3 * t)]) # #仿真信号3 # Fs=1000 #采样频率 # t = np.arange(0, 1.0, 1.0 / Fs) # f1,f2,f3 = 100,200,300 # signal = 3*np.sin(2*np.pi*f1*t)+6*np.sin(2*np.pi*f2*t)+5*np.sin(2*np.pi*f3*t) IMFs=Auto_VMD_main(signal,Fs,draw=1,maxK=10) from eemd_hht import hhtlw tt,ff,c_matrix=hhtlw(IMFs,t,f_range=[0,Fs/2],t_range=[0,t[-1]],ft_size=[128,128]) #画希尔伯特谱
仿真如下信号验证,采样频率为6000 Hz,信号时间长度为1 s:
y = sin (2π f 1 t) ∗ [cos ( 2 π f 2 t ) +cos ( 2 π f 3 t ) +cos ( 2 π f 4 t ) ] y=\sin \left( 2\pi {{f}_{1}}t \right)*\left[ \cos \left( 2\pi {{f}_{2}}t \right)+\cos \left( 2\pi {{f}_{3}}t \right)+\cos \left( 2\pi {{f}_{4}}t \right) \right] y=sin(2πf1t)∗[cos(2πf2t)+cos(2πf3t)+cos(2πf4t)]
f1 , f2 , f3 , f4 = 100 , 1000 , 1500 , 2000 {{f}_{1}},{{f}_{2}},{{f}_{3}},{{f}_{4}}=100,1000,1500,2000 f1,f2,f3,f4=100,1000,1500,2000
由于傅里叶变化的思想是采用标准正弦波来拟合信号,而本文信号由于出现正弦波相乘,经过三角函数积化和差可转换为6个正弦波,故原始信号频谱包含6个频率成分。
y = 12 sin (2π ( f 1 + f 2 ) t) + sin (2π ( f 1 − f 2 ) t) + sin (2π ( f 1 + f 3 ) t) + y=\frac{1}{2}\sin \left( 2\pi \left( {{f}_{1}}+{{f}_{2}} \right)t \right)+\sin \left( 2\pi \left( {{f}_{1}}-{{f}_{2}} \right)t \right)+\sin \left( 2\pi \left( {{f}_{1}}+{{f}_{3}} \right)t \right)+ y=21sin(2π(f1+f2)t)+sin(2π(f1−f2)t)+sin(2π(f1+f3)t)+
sin (2π ( f 1 − f 3 ) t) + sin (2π ( f 1 + f 4 ) t) + sin (2π ( f 1 − f 4 ) t) \sin \left( 2\pi \left( {{f}_{1}}-{{f}_{3}} \right)t \right)+\sin \left( 2\pi \left( {{f}_{1}}+{{f}_{4}} \right)t \right)+\sin \left( 2\pi \left( {{f}_{1}}-{{f}_{4}} \right)t \right) sin(2π(f1−f3)t)+sin(2π(f1+f4)t)+sin(2π(f1−f4)t)
原始信号的时域图与频谱图如下:
采用稀疏度自动寻找最佳K值为6,寻优过程以及分解后的时频图如下:
采用转子试验台数据(无故障状态)分析,采样频率为30720 Hz,样本长度为1024,原始时域及频域图如下,大致可以分为6-8个频带,图中圈圈为本方法确定的最佳模态分量数下各IMF的频带中心,基本符合信号包含的窄带个数:
采用稀疏度自动寻找最佳K值为6,寻优过程以及分解后的时频图如下:
各IMF的边际谱如下,基本对应频谱中的各频率成分:
来源地址:https://blog.csdn.net/Lwwwwwwwl/article/details/130861254
--结束END--
本文标题: Python论文复现:VMD之自适应选择分解模态数K值
本文链接: https://lsjlt.com/news/391325.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-03-01
2024-03-01
2024-03-01
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0