返回顶部
首页 > 资讯 > 后端开发 > Python >斯皮尔曼(spearman)相关系数python代码实现
  • 772
分享到

斯皮尔曼(spearman)相关系数python代码实现

学习经验分享Poweredby金山文档 2023-09-02 15:09:02 772人浏览 泡泡鱼

Python 官方文档:入门教程 => 点击学习

摘要

简介 斯皮尔曼等级相关系数(简称等级相关系数,或称秩相关系数,英语:Spearman's rank correlation coefficient或Spearman's ρ)。一般用或者表示。它是衡量两个变量的相关性的无母数指标。它利用单

简介

斯皮尔曼等级相关系数(简称等级相关系数,或称秩相关系数,英语:Spearman's rank correlation coefficient或Spearman's ρ)。一般用或者表示。它是衡量两个变量的相关性的无母数指标。它利用单调函数评价两个统计变量的相关性。若数据中没有重复值,且当两变量完全单调相关时,斯皮尔曼相关系数为+1或−1,而且位于-1到1之间如图所示。

更常用的一般为这个公式,但是比较麻烦。一般我们直接调用scipy.stats.spearman()直接调用。

备注:当所有的等级数值都为整数时,可以通过以下简单的公式计算等级相关系数。

斯皮尔曼(等级)系数主要是针对X,Y两个变量求相关性

适用范围

  1. 用于当数据不满足下列条件任意一个(线性关系,连续数据,正态分布)的时候

  1. 当数据为定序数据的时候

定序数据为反应登记的数据,代表了某种逻辑顺序,而且属于品质数据,(甲,乙,丙)(优,良,差)等类型都可以称为定序数据。

补充spearman系数数据排序

备注:如果变量数据相同的话,我们采取依次顺序排序,相同数值取位置的平均值

具体代码

import numpy as npimport pandas as pdimport scipy.stats as statsdef calculate_spearman_correlation(X, Y):    return stats.spearmanr(X, Y)[0]def calculate_spearman_correlation_p(X, Y):    return stats.spearmanr(X, Y)[1]if __name__=='__main__':    x = [1, 2, 3, 4, 5, 6, 7, 8, 9]    y = [2, 1, 2, 4.5, 7, 6.5, 6, 9, 9.5]    print(calculate_spearman_correlation_p(x, y))    print(calculate_spearman_correlation(x, y))

spearman检验

小样本检验(n<30)

在一般情况下,我们通过直接适用查表的方式进行验证,即为spearman系数要大于表中对应的临界值。即为我们认为我们的相关系数大于表中的临界值,我们认为相关系数是有显著性差异的,即为有相关性而且相关性不为0

大样本检验(n>30)

在一般情况下,我们通过构造统计量进行假设检验,假设检验如图,而且在统计量,如果统计量符合正态分布,具体公式如图所示。

H0:
H1:

(构造的统计量符合正态分布)

计算p值,如果p值大于0.05,即为证明有显著差异。即为有相关性,相关系数不为0。

求P值代码

def calculate_spearman_correlation_p(X, Y):    return stats.spearmanr(X, Y)[1]

来源地址:https://blog.csdn.net/xiaziqiqi/article/details/128890810

--结束END--

本文标题: 斯皮尔曼(spearman)相关系数python代码实现

本文链接: https://lsjlt.com/news/390993.html(转载时请注明来源链接)

有问题或投稿请发送至: 邮箱/279061341@qq.com    QQ/279061341

猜你喜欢
软考高级职称资格查询
编程网,编程工程师的家园,是目前国内优秀的开源技术社区之一,形成了由开源软件库、代码分享、资讯、协作翻译、讨论区和博客等几大频道内容,为IT开发者提供了一个发现、使用、并交流开源技术的平台。
  • 官方手机版

  • 微信公众号

  • 商务合作