Tensorflow中slim包的具体用法 1、训练脚本文件(该文件包含数据下载打包、模型训练,模型评估流程)3、模型训练1、数据集相关模块:2、设置网络模型模块3、数据预处理模块4、定义损失loss5、定义优化器模块 本次
本次使用的TensorFlow版本是1.13.0
地址:https://github.com/tensorflow/models/tree/r1.13.0
到tensorflow-models的GitHub下载research下面的slim这个包到本地
TensorFlow中slim包的目录结构:
-- slim |-- BUILD |-- README.md |-- WORKSPACE |-- __init__.py |-- datasets | |-- __init__.py | |-- __pycache__ | | |-- __init__.cpython-37.pyc | | |-- dataset_utils.cPython-37.pyc | | |-- download_and_convert_cifar10.cpython-37.pyc | | |-- download_and_convert_flowers.cpython-37.pyc | | `-- download_and_convert_mnist.cpython-37.pyc | |-- build_imagenet_data.py | |-- cifar10.py | |-- dataset_factory.py | |-- dataset_utils.py | |-- download_and_convert_cifar10.py | |-- download_and_convert_flowers.py | |-- download_and_convert_imagenet.sh | |-- download_and_convert_mnist.py | |-- download_imagenet.sh | |-- flowers.py | |-- imagenet.py | |-- imagenet_2012_validation_synset_labels.txt | |-- imagenet_lsvrc_2015_synsets.txt | |-- imagenet_metadata.txt | |-- mnist.py | |-- preprocess_imagenet_validation_data.py | `-- process_bounding_boxes.py |-- deployment | |-- __init__.py | |-- model_deploy.py | `-- model_deploy_test.py |-- download_and_convert_data.py # 下载相应的数据集,并将数据打包成TF-record的格式 |-- eval_image_classifier.py # 测试模型分类效果 |-- export_inference_graph.py |-- export_inference_graph_test.py |-- nets | |-- __init__.py | |-- alexnet.py | |-- alexnet_test.py | |-- cifarnet.py | |-- cyclegan.py | |-- cyclegan_test.py | |-- dcgan.py | |-- dcgan_test.py | |-- i3D.py | |-- i3d_test.py | |-- i3d_utils.py | |-- inception.py | |-- inception_resnet_v2.py | |-- inception_resnet_v2_test.py | |-- inception_utils.py | |-- inception_v1.py | |-- inception_v1_test.py | |-- inception_v2.py | |-- inception_v2_test.py | |-- inception_v3.py | |-- inception_v3_test.py | |-- inception_v4.py | |-- inception_v4_test.py | |-- lenet.py | |-- mobilenet | | |-- README.md | | |-- __init__.py | | |-- conv_blocks.py | | |-- madds_top1_accuracy.png | | |-- mnet_v1_vs_v2_pixel1_latency.png | | |-- mobilenet.py | | |-- mobilenet_example.ipynb | | |-- mobilenet_v2.py | | `-- mobilenet_v2_test.py | |-- mobilenet_v1.md | |-- mobilenet_v1.png | |-- mobilenet_v1.py | |-- mobilenet_v1_eval.py | |-- mobilenet_v1_test.py | |-- mobilenet_v1_train.py | |-- nasnet | | |-- README.md | | |-- __init__.py | | |-- nasnet.py | | |-- nasnet_test.py | | |-- nasnet_utils.py | | |-- nasnet_utils_test.py | | |-- pnasnet.py | | `-- pnasnet_test.py | |-- nets_factory.py | |-- nets_factory_test.py | |-- overfeat.py | |-- overfeat_test.py | |-- pix2pix.py | |-- pix2pix_test.py | |-- resnet_utils.py | |-- resnet_v1.py | |-- resnet_v1_test.py | |-- resnet_v2.py | |-- resnet_v2_test.py | |-- s3dg.py | |-- s3dg_test.py | |-- vgg.py | `-- vgg_test.py |-- preprocessing | |-- __init__.py | |-- cifarnet_preprocessing.py | |-- inception_preprocessing.py | |-- lenet_preprocessing.py | |-- preprocessing_factory.py | `-- vgg_preprocessing.py |-- scripts # gqr:存储的是相关的模型训练脚本 | |-- export_mobilenet.sh | |-- finetune_inception_resnet_v2_on_flowers.sh | |-- finetune_inception_v1_on_flowers.sh | |-- finetune_inception_v3_on_flowers.sh | |-- finetune_resnet_v1_50_on_flowers.sh | |-- train_cifarnet_on_cifar10.sh | `-- train_lenet_on_mnist.sh |-- setup.py |-- slim_walkthrough.ipynb `-- train_image_classifier.py # 训练模型的脚本
scripts/finetune_resnet_v1_50_on_flowers.sh
#!/bin/bash# Copyright 2017 The TensorFlow Authors. All Rights Reserved.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## Http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language Governing permissions and# limitations under the License.# ==============================================================================## This script perfORMs the following operations:# 1. Downloads the Flowers dataset# 2. Fine-tunes a ResNetV1-50 model on the Flowers training set.# 3. Evaluates the model on the Flowers validation set.## Usage:# cd slim# ./slim/scripts/finetune_resnet_v1_50_on_flowers.shset -e# Where the pre-trained ResNetV1-50 checkpoint is saved to.PRETRAINED_CHECKPOINT_DIR=/tmp/checkpoints # gqr:预训练模型存放路径# Where the training (fine-tuned) checkpoint and logs will be saved to.TRAIN_DIR=/tmp/flowers-models/resnet_v1_50# Where the dataset is saved to.DATASET_DIR=/tmp/flowers # gqr:数据集存放路径# Download the pre-trained checkpoint.if [ ! -d "$PRETRAINED_CHECKPOINT_DIR" ]; then mkdir ${PRETRAINED_CHECKPOINT_DIR}fiif [ ! -f ${PRETRAINED_CHECKPOINT_DIR}/resnet_v1_50.ckpt ]; then wget http://download.tensorflow.org/models/resnet_v1_50_2016_08_28.tar.gz tar -xvf resnet_v1_50_2016_08_28.tar.gz mv resnet_v1_50.ckpt ${PRETRAINED_CHECKPOINT_DIR}/resnet_v1_50.ckpt rm resnet_v1_50_2016_08_28.tar.gzfi# Download the datasetpython download_and_convert_data.py \ --dataset_name=flowers \ --dataset_dir=${DATASET_DIR}# Fine-tune only the new layers for 3000 steps.python train_image_classifier.py \ --train_dir=${TRAIN_DIR} \ --dataset_name=flowers \ --dataset_split_name=train \ --dataset_dir=${DATASET_DIR} \ --model_name=resnet_v1_50 \ --checkpoint_path=${PRETRAINED_CHECKPOINT_DIR}/resnet_v1_50.ckpt \ --checkpoint_exclude_scopes=resnet_v1_50/logits \ --trainable_scopes=resnet_v1_50/logits \ --max_number_of_steps=3000 \ --batch_size=32 \ --learning_rate=0.01 \ --save_interval_secs=60 \ --save_summaries_secs=60 \ --log_every_n_steps=100 \ --optimizer=rmsprop \ --weight_decay=0.00004# Run evaluation.python eval_image_classifier.py \ --checkpoint_path=${TRAIN_DIR} \ --eval_dir=${TRAIN_DIR} \ --dataset_name=flowers \ --dataset_split_name=validation \ --dataset_dir=${DATASET_DIR} \ --model_name=resnet_v1_50# Fine-tune all the new layers for 1000 steps.python train_image_classifier.py \ --train_dir=${TRAIN_DIR}/all \ --dataset_name=flowers \ --dataset_split_name=train \ --dataset_dir=${DATASET_DIR} \ --checkpoint_path=${TRAIN_DIR} \ --model_name=resnet_v1_50 \ --max_number_of_steps=1000 \ --batch_size=32 \ --learning_rate=0.001 \ --save_interval_secs=60 \ --save_summaries_secs=60 \ --log_every_n_steps=100 \ --optimizer=rmsprop \ --weight_decay=0.00004# Run evaluation.python eval_image_classifier.py \ --checkpoint_path=${TRAIN_DIR}/all \ --eval_dir=${TRAIN_DIR}/all \ --dataset_name=flowers \ --dataset_split_name=validation \ --dataset_dir=${DATASET_DIR} \ --model_name=resnet_v1_50
以上文件以下载并打包flowers数据集为例会调用slim/datasets下的****download_and_convert_flowers.py
代码43行:_NUM_VALIDATION = 350值的意思的测试数据集的数量,我们一般2,8分数据集,这里只用填写测试集的数据代码会自动吧总数据集分成2部分
代码48行:_NUM_SHARDS = 1这个的意思是生成几个tfrecord文件,这个数量是根据你数据量来划分
代码190行:dataset_utils.download_and_uncompress_tarball(_DATA_URL, dataset_dir) 函数为下载数据集函数,如果本地已经存在数据集,可将将其注释掉
代码210行:_clean_up_temporary_files(dataset_dir) 函数为打包完毕后删除下载的数据集文件,如果需要下载的数据集可以将其注释掉
上述文件执行完毕后,会得到以下文件
模型训练文件为
以下是该文件中各个模块相关内容
运行训练指令:
python train_image_classifier.py \ --train_dir=./data/flowers-models/resnet_v1_50\ --dataset_name=flowers \ --dataset_split_name=train \ --dataset_dir=./data/flowers \ --model_name=resnet_v1_50 \ --checkpoint_path=./data/checkpoints/resnet_v1_50.ckpt \ --checkpoint_exclude_scopes=resnet_v1_50/logits \ --trainable_scopes=resnet_v1_50/logits \ --max_number_of_steps=3000 \ --batch_size=32 \ --learning_rate=0.01 \ --save_interval_secs=60 \ --save_summaries_secs=60 \ --log_every_n_steps=100 \ --optimizer=rmsprop \ --weight_decay=0.00004
–dataset_name=指定模板
–model_name=指定预训练模板
–dataset_dir=指定训练集目录
–checkpoint_exclude_scopes=指定忘记那几层的参数,不带进训练里面,记住提取特征的部分
–train_dir=训练参数存放地址
–trainable_scopes=设定只对那几层变量进行调整,其他层都不进行调整,不设定就会对所有层训练(所以是必须要给定的)
–learning_rate=学习率
–optimizer=优化器
–checkpoint_path:预训练模型存放地址
–max_number_of_steps=训练步数
–batch_size=一次训练所选取的样本数。 (Batch Size的大小影响模型的优化程度和速度。同时其直接影响到GPU内存的使用情况,假如你GPU内存不大,该数值最好设置小一点。)
–weight_decay=即模型中所有参数的二次正则化超参数(这个的加入就是为了防止过拟合加入正则项,weight_decay 是乘在正则项的前面,控制正则化项在损失函数中所占权重的)
注意:在模型训练前,需要下载预训练模型,
wget http://download.tensorflow.org/models/resnet_v1_50_2016_08_28.tar.gz
解压后存放在相应目录
来源地址:https://blog.csdn.net/guoqingru0311/article/details/132514699
--结束END--
本文标题: TensorFlow-slim包进行图像数据集分类---具体流程
本文链接: https://lsjlt.com/news/383184.html(转载时请注明来源链接)
有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341
2024-03-01
2024-03-01
2024-03-01
2024-03-01
2024-03-01
2024-02-29
2024-02-29
2024-02-29
2024-02-29
2024-02-29
回答
回答
回答
回答
回答
回答
回答
回答
回答
回答
0